大家好,花哥我发现了一个大模型学习的神库,包含大量LLM教材和资料,并绘制了学习路线图。可以帮助快速掌握大模型的应用和开发技巧。
GitHub地址:https://github.com/mlabonne/llm-course
LLM 基础知识
1. 机器学习之数学基石
在踏足机器学习的殿堂之前,深入理解其背后的数学原理至关重要。
-
线性代数:它如同桥梁,连接着算法与数据世界。向量、矩阵、行列式、特征值与特征向量、向量空间及线性变换等概念,均为深度学习中的算法提供坚实的支撑。
-
微积分:在连续函数的优化旅程中,导数、积分、极限与级数如同灯塔,指引我们前行。同时,多变量微积分与梯度的概念亦不可忽视。
-
概率与统计:它们让模型从数据中汲取智慧,预见未来。概率论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计及贝叶斯推理,这些概念如同星辰,点亮了我们的预测之路。