一、本文介绍
本文记录的是利用CARAFE上采样对YOLOv9的颈部网络进行改进的方法研究。YOLOv9
采用传统的最近邻插值的方法,仅考虑子像素邻域,无法捕获密集预测任务所需的丰富语义信息,从而影响模型在密集预测任务中的性能。CARAFE
通过在大感受野内聚合信息、能够实时适应实例特定内容且保持计算效率。
文章目录
二、CARAFE介绍
CARAFE
: 内容感知的特征重新组合
CARAFE(Content - Aware ReAssembly of FEatures)
是一种用于特征上采样的操作符,其设计原理和优势如下:
2.1、CARAFE原理
- 总体框架:
CARAFE
由两个关键组件组成,即核预测模块和内容感知重组模块。给定大小为 C × H × W C×H×W C×H×W的特征图 x x x和上采样比例 σ \sigma σ(假设 σ \sigma σ是整数),CARAFE
将产生大小为 C × σ H × σ W C×\sigma H×\sigma W C×σH×σW的新特征图 X ′ X' X′。 - 核预测模块:负责以内容感知的方式生成重组核。每个源位置
x
x
x上对应
σ
2
\sigma^{2}
σ2个目标位置
X
′
X'
X′上,每个目标位置需要一个
k
u
p
×
k
u
p
k_{u p}×k_{u p}
kup×kup的重组核,因此该模块将输出大小为
C
u
p
×
H
×
W
C_{u p}×H×W
Cup×H×W的重组核,其中
C
u
p
=
σ
2
k
u
p
2
C_{u p} = \sigma^{2}k_{u p}^{2}
Cup=σ2kup2。该模块由三个子模块组成,分别是通道压缩器、内容编码器和核归一化器。
- 通道压缩器:采用 1 × 1 1×1 1×1卷积层将输入特征通道从 C C C压缩到 C m C_{m} Cm,减少特征图的通道数,从而减少后续步骤的参数和计算成本,使CARAFE更高效。
- 内容编码器:使用核大小为 k e n c o d e r k_{encoder} kencoder的卷积层根据输入特征的内容生成重组核,编码器的参数为 k e n c o d e r × k e n c o d e r × C m × C u p k_{encoder}×k_{encoder}×C_{m}×C_{u p} kencoder×kencoder×Cm×Cup。增大 k e n c o d e r k_{encoder} kencoder可以扩大编码器的感受野,利用更大区域内的上下文信息,但计算复杂度也会随之增加。通过研究, k e n c o d e r = k u p − 2 k_{encoder} = k_{u p} - 2 kencoder=kup−2是性能和效率之间的良好平衡。
- 核归一化器:在将每个 k u p × k u p k_{u p}×k_{u p} kup×kup重组核应用于输入特征图之前,使用softmax函数对其进行空间归一化,使核值之和为 1 1 1,这是对局部区域的软选择。
- 内容感知重组模块:对于目标位置 l ′ l' l′和以 l = ( i , j ) l = (i, j) l=(i,j)为中心的相应方形区域 N ( X l , k u p ) N(X_{l}, k_{u p}) N(Xl,kup),重组过程如公式 X l ′ ′ = ∑ n = − r r ∑ m = − r r W l ′ ( n , m ) ⋅ X ( i + n , j + m ) \mathcal{X}_{l'}' = \sum_{n = -r}^{r}\sum_{m = -r}^{r}\mathcal{W}_{l'(n, m)}·\mathcal{X}_{(i + n, j + m)} Xl′′=∑n=−rr∑m=−rrWl′(n,m)⋅X(i+n,j+m)所示,其中 r = ⌊ k u p / 2 ⌋ r = \lfloor k_{u p} / 2\rfloor r=⌊kup/2⌋。通过重组核,区域 N ( X l , k u p ) N(X_{l}, k_{u p}) N(Xl,kup)中的每个像素根据特征的内容而不是位置的距离对上采样像素 l ′ l' l′的贡献不同,使得重组后的特征图的语义比原始特征图更强。
2.2、优势
- 大视野:与之前仅利用子像素邻域的工作不同,
CARAFE
可以在大感受野内聚合上下文信息。 - 内容感知处理:
CARAFE
能够根据实例特定的内容进行实时处理,为每个样本生成自适应的内核,而不是使用固定的内核。 - 轻量且计算快速:
CARAFE
引入的计算开销很小,可以很容易地集成到现代网络架构中。 - 通用性和有效性:在对象检测、实例分割、语义分割、图像修复等广泛的密集预测任务中,CARAFE都能显著提升性能。
论文:https://arxiv.org/abs/1905.02188
源码:https://github.com/tiny-smart/dysample
三、CARAFE的实现代码
CARAFE模块
的实现代码如下:
class CARAFE(nn.Module):
def __init__(self, c, k_enc=3, k_up=5, c_mid=64, scale=2):
""" The unofficial implementation of the CARAFE module.
The details are in "https://arxiv.org/abs/1905.02188".
Args:
c: The channel number of the input and the output.
c_mid: The channel number after compression.
scale: The expected upsample scale.
k_up: The size of the reassembly kernel.
k_enc: The kernel size of the encoder.
Returns:
X: The upsampled feature map.
"""
super(CARAFE, self).__init__()
self.scale = scale
self.comp = Conv(c, c_mid)
self.enc = Conv(c_mid, (scale * k_up) ** 2, k=k_enc, act=False)
self.pix_shf = nn.PixelShuffle(scale)
self.upsmp = nn.Upsample(scale_factor=scale, mode='nearest')
self.unfold = nn.Unfold(kernel_size=k_up, dilation=scale,
padding=k_up // 2 * scale)
def forward(self, X):
b, c, h, w = X.size()
h_, w_ = h * self.scale, w * self.scale
W = self.comp(X) # b * m * h * w
W = self.enc(W) # b * 100 * h * w
W = self.pix_shf(W) # b * 25 * h_ * w_
W = torch.softmax(W, dim=1) # b * 25 * h_ * w_
X = self.upsmp(X) # b * c * h_ * w_
X = self.unfold(X) # b * 25c * h_ * w_
X = X.view(b, c, -1, h_, w_) # b * 25 * c * h_ * w_
X = torch.einsum('bkhw,bckhw->bchw', [W, X]) # b * c * h_ * w_
return X
四、添加步骤
4.1 修改common.py
此处需要修改的文件是models/common.py
common.py中定义了网络结构的通用模块
,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。
CARAFE模块
添加后如下:
注意❗:在4.2小节
中的yolo.py
文件中需要声明的模块名称为:CARAFE
。
4.2 修改yolo.py
此处需要修改的文件是models/yolo.py
yolo.py用于函数调用
,我们只需要将common.py
中定义的新的模块名添加到parse_model函数
下即可。
在def parse_model(d, ch)
中将CARAFE模块
添加后如下:
elif m in [CARAFE]:
args = [ch[f], *args[0:]]
五、yaml模型文件
5.1 模型改进
在代码配置完成后,配置模型的YAML文件。
此处以models/detect/yolov9-c.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-CARAFE.yaml
。
将yolov9-c.yaml
中的内容复制到yolov9-c-CARAFE.yaml
文件下,修改nc
数量等于自己数据中目标的数量。