背景
日常使用中,当数据库占用空间太大,把一个最大的表删掉了一半的数据,但是表文件的大小还是没变,这是为什么呢?
针对 InnoDB 引擎,一个 InnoDB 表包含两部分,即:表结构定义和数据。在 MySQL 8.0 版本以前,表结构是存在以.frm 为后缀的文件里。而 MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很小,所以我们今天主要讨论的是表数据。
参数 innodb_file_per_table
表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数 innodb_file_per_table 控制的:
- 这个参数设置为 OFF 表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;
- 这个参数设置为 ON 表示的是,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。
从 MySQL 5.6.6 版本开始,它的默认值就是 ON 了。
建议无论何时都设置为 ON。因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过 drop table 命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。
所以,将 innodb_file_per_table 设置为 ON,是推荐做法,我们接下来的讨论都是基于这个设置展开的。
我们在删除整个表的时候,可以使用 drop table 命令回收表空间。但是,我们遇到的更多的 删除数据的场景是删除某些行,这时就遇到了我们文章开头的问题:表中的数据被删除了,但是表空间却没有被回收。
数据删除流程
InnoDB 里的数据都是用 B+ 树的结构组织的:
假设,我们要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。
现在,你已经知道了 InnoDB 的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?答案是,整个数据页就可以被复用了。
但是,数据页的复用跟记录的复用是不同的。
记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4 这条记录被删除后,如果插入一个 ID 是 400 的行,可以直接复用这个空间。但如果插入的是一个 ID 是 800 的行,就不能复用这个位置了。
而当整个页从 B+ 树里面摘掉以后,可以复用到任何位置。以图 1 为例,如果将数据页 page A 上的所有记录删除以后,page A 会被标记为可复用。这时候如果要插入一条 ID=50 的记录需要使用新页的时候,page A 是可以被复用的。
如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。
进一步地,如果我们用 delete 命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。
你现在知道了,delete 命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过 delete 命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。
实际上,不止是删除数据会造成空洞,插入数据也会。
如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造成索引的数据页分裂。
可以看到,由于 page A 满了,再插入一个 ID 是 550 的数据时,就不得不再申请一个新的页面 page B 来保存数据了。页分裂完成后,page A 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。
另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。
也就是说,经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。
而重建表,就可以达到这样的目的。
重建表
试想一下,如果你现在有一个表 A,需要做空间收缩,为了把表中存在的空洞去掉,你可以怎么做呢?
你可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。
由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。显然地,表 B 的主键索引更紧凑,数据页的利用率也更高。如果我们把表 B 作为临时表,数据从表 A 导入表 B 的操作完成后,用表 B 替换 A,从效果上看,就起到了收缩表 A 空间的作用。
这里,你可以使用 alter table A engine=InnoDB 命令来重建表。在 MySQL 5.5 版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表 B 不需要你自己创建,MySQL 会自动完成转存数据、交换表名、删除旧表的操作。
显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。因此,在整个 DDL 过程中,表 A 中不能有更新。也就是说,这个 DDL 不是 Online 的。
而在 MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。 大致流程如下:
- 建立一个临时文件,扫描表 A 主键的所有数据页;
- 用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;
- 生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中,对应的是图中 state2 的状态;
- 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件,对应的就是图中 state3 的状态;
- 用临时文件替换表 A 的数据文件。
不同之处在于,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表 A 做增删改操作。这也就是 Online DDL 名字的来源。
alter 语句在启动的时候需要获取 MDL 写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。
为什么要退化呢?为了实现 Online,MDL 读锁不会阻塞增删改操作。
那为什么不干脆直接解锁呢?为了保护自己,禁止其他线程对这个表同时做 DDL。
而对于一个大表来说,Online DDL 最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。所以,相对于整个 DDL 过程来说,锁的时间非常短。对业务来说,就可以认为是 Online 的。
上述的这些重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗 IO 和 CPU 资源的。因此,如果是线上服务,你要很小心地控制操作时间。如果想要比较安全的操作的话,我推荐你使用 GitHub 开源的 gh-ost 来做。
Online 和 inplace
在重建表的图一中,我们把表 A 中的数据导出来的存放位置叫作 tmp_table。这是一个临时表,是在 server 层创建的。
而在图二中,根据表 A 重建出来的数据是放在“tmp_file”里的,这个临时文件是 InnoDB 在内部创建出来的。整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。
- DDL 过程如果是 Online 的,就一定是 inplace 的;
- 反过来未必,也就是说 inplace 的 DDL,有可能不是 Online 的。截止到 MySQL 8.0,添加全文索引(FULLTEXT index)和空间索引 (SPATIAL index) 就属于这种情况。
- 从 MySQL 5.6 版本开始,alter table t engine = InnoDB(也就是 recreate)默认的就是上面图二的流程了;
- analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了 MDL 读锁;
- optimize table t 等于 recreate+analyze。
小结
现在我们已经知道了,如果要收缩一个表,只是 delete 掉表里面不用的数据的话,表文件的大小是不会变的,你还要通过 alter table 命令重建表,才能达到表文件变小的目的。我跟你介绍了重建表的两种实现方式,Online DDL 的方式是可以考虑在业务低峰期使用的,而 MySQL 5.5 及之前的版本,这个命令是会阻塞 DML 的,这个你需要特别小心。
问题
假设现在有人碰到了一个“想要收缩表空间,结果适得其反”的情况,看上去是这样的:
- 一个表 t 文件大小为 1TB;
- 对这个表执行 alter table t engine=InnoDB;
- 发现执行完成后,空间不仅没变小,还稍微大了一点儿,比如变成了 1.01TB。
你觉得可能是什么原因呢 ?
解答:
- 这个表,本身就已经没有空洞的了,在 DDL 期间,如果刚好有外部的 DML 在执行,这期间可能会引入一些新的空洞。
- 在重建表的时候,InnoDB 不会把整张表占满,每个页留了 1/16 给后续的更新用。也就是说,其实重建表之后不是“最”紧凑的。 所以,当我们重建完一次表之后,插入一部份数据(用掉了一部份预留空间)。然乎再重建一次,就有可能会出现上面的情况。