首页 > 其他分享 >[ABC293Ex] Optimal Path Decomposition 题解

[ABC293Ex] Optimal Path Decomposition 题解

时间:2024-09-07 15:46:43浏览次数:13  
标签:颜色 int 题解 Decomposition Optimal 节点 dp

[ABC293Ex] Optimal Path Decomposition 题解

是一道难得一遇的好题。

对于题目中的两个限制,同时满足是困难的,于是考虑常见的套路:先固定其中一个,再计算另一个

对于本题,显然 \(k\) 是有单调性的,于是考虑二分这个 \(k\),将最优性问题转化为可行性问题,dp 路径的最小长度。那么考虑 dp 状态的设计。

对于划分颜色在一条路径上的要求,我们考察每个节点颜色和自己子节点颜色的关系。设 \(dp_{i,j}\) 表示 \(i\) 节点有 \(\le j\) 个和 \(i\) 节点颜色相同的子节点时经过 \(i\) 的最多颜色路径的颜色个数的最小值,那么显然 \(j\le 2\)。那么转移的时候从子节点依次转移,合并 dp 数组计算颜色个数即可。

具体的转移方程见代码:

#include <bits/stdc++.h>
#define N 200005
#define inf 0x3f3f3f3f
using namespace std;
int n;
struct Node {
	int to, nxt;
} e[N << 1];
int head[N], cnt;
void add(int u, int v) {
	e[++cnt].to = v;
	e[cnt].nxt = head[u];
	head[u] = cnt;
}
int dp[N][3];
int k;
void dfs(int x, int fa) {
	dp[x][0] = dp[x][1] = dp[x][2] = 1;
	for (int i = head[x]; i; i = e[i].nxt) {
		int y = e[i].to;
		if (y == fa)
			continue;
		dfs(y, x);
		int f[3] = {inf, inf, inf};
		if (dp[x][0] + dp[y][2] <= k)
			f[0] = min(f[0], max(dp[x][0], dp[y][2] + 1));
		if (dp[x][0] + dp[y][1] <= k + 1)
			f[1] = min(f[1], max(dp[x][0], dp[y][1]));
		if (dp[x][1] + dp[y][2] <= k)
			f[1] = min(f[1], max(dp[x][1], dp[y][2] + 1));
		if (dp[x][1] + dp[y][1] <= k + 1)
			f[2] = min(f[2], max(dp[x][1], dp[y][1]));
		if (dp[x][2] + dp[y][2] <= k)
			f[2] = min(f[2], max(dp[x][2], dp[y][2] + 1));
		dp[x][0] = f[0];
		dp[x][1] = min(dp[x][0], f[1]);
		dp[x][2] = min(dp[x][1], f[2]);
	}
}
int main() {
	cin >> n;
	for (int i = 1; i < n; i++) {
		int x, y;
		scanf("%d%d", &x, &y);
		add(x, y);
		add(y, x);
	}
	int l = 1, r = n, ans = 0;
	while (l <= r) {
		k = (l + r) >> 1;
		dfs(1, 0);
		if (dp[1][2] <= k)
			ans = k, r = k - 1;
		else
			l = k + 1;
	}
	cout << ans << "\n";
	return 0;
}

标签:颜色,int,题解,Decomposition,Optimal,节点,dp
From: https://www.cnblogs.com/Rock-N-Roll/p/18401786

相关文章

  • CF1991E Coloring Game 题解
    Description有一个由\(n\)个顶点和\(m\)条边组成的无向图。每个顶点可以用三种颜色之一着色:\(1\)、\(2\)或\(3\)。初始时,所有顶点都未着色。Alice和Bob正在玩一个包含\(n\)轮的游戏。在每一轮中,都会发生以下两个步骤:Alice选择两种不同的颜色。Bob选择一个未......
  • RecyclerView 高效使用与常见问题解决
    RecyclerView是Android应用开发中最常用的UI组件之一,通常用于显示大量数据列表。尽管功能强大,但如果使用不当,会导致性能问题、数据错乱或滚动卡顿等问题。在本篇文章中,我们将探讨RecyclerView的一些常见坑点,提供解决方案,并附带代码示例。1.坑点:ViewHolder重用导致数据错乱......
  • ctfshow web红包题第二弹题解
    从今天开始记录刷题日常打开靶场平平无奇,看源代码发现如下提示get方式提交cmd参数,猜测是命令执行漏洞,先写个phpinfo();试试。有用,但报错cerror查看显示出来部分php代码,过滤了很多东西if(preg_match("/[A-Za-oq-z0-9$]+/",$cmd)) 第一个正则表达式把字母数字几乎全......
  • [ABC137F] Polynomial Construction 题解
    明明有最厉害最好想的插值做法,怎么没有人写呢。思路考虑\(n\)个点可以确定一个\(n-1\)次多项式。如何确定。令\(l_i(x)=\prod_{j\not=i}\frac{(x-x_j)}{(x_i-x_j)}\)。可以发现这个多项式在\(x=x_i\)时值为一,在\(x=x_j(j\not=i)\)时值为零。那么就有:\[F(x)=\su......
  • 题解:AT_abc369_e [ABC369E] Sightseeing Tour 详细版
    题目大意给定一个NNN个点,MMM条边的无向图。其中边有边权。有......
  • 题解:SP3693 KGSS - Maximum Sum
    原题传送门思路分析线段树。这道题让我们进行两种操作,分别是单点修改和区间查询,结合数据范围,很明显是一道线段树。区间里最大的\(A_i+A_j\),其实就是求区间里的最大值和次大值,我们用线段树维护最大值和次大值。建树voidbuild(intnow,inttl,inttr){ if(tl==tr){ tmax......