首页 > 其他分享 >【STM32项目设计】STM32F411健康助手--MAX30102 心率血氧传感器(5)

【STM32项目设计】STM32F411健康助手--MAX30102 心率血氧传感器(5)

时间:2024-09-06 10:52:58浏览次数:12  
标签:血氧 -- void STM32 u8 IIC pn MAX30102 define

硬件设计

硬件连接

MAX30102    STM32
SDAPB7
SCLPB6
INTPB8
GNDGND
3V33V3

软件设计

max30102.c

#include "max30102.h"
#include "delay.h"

u8 max30102_Bus_Write(u8 Register_Address, u8 Word_Data)
{

	/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */

	/* 第1步:发起I2C总线启动信号 */
	MAX30102_IIC_Start();

	/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

	/* 第3步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第4步:发送字节地址 */
	MAX30102_IIC_Send_Byte(Register_Address);
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}
	
	/* 第5步:开始写入数据 */
	MAX30102_IIC_Send_Byte(Word_Data);

	/* 第6步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();
	return 1;	/* 执行成功 */

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();
	return 0;
}



u8 max30102_Bus_Read(u8 Register_Address)
{
	u8  data;


	/* 第1步:发起I2C总线启动信号 */
	MAX30102_IIC_Start();

	/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

	/* 第3步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第4步:发送字节地址, */
	MAX30102_IIC_Send_Byte((uint8_t)Register_Address);
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}
	

	/* 第6步:重新启动I2C总线。下面开始读取数据 */
	MAX30102_IIC_Start();

	/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_RD);	/* 此处是读指令 */

	/* 第8步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第9步:读取数据 */
	{
		data = MAX30102_IIC_Read_Byte(0);	/* 读1个字节 */

		MAX30102_IIC_NAck();	/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
	}
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();
	return data;	/* 执行成功 返回data值 */

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();
	return 0;
}


void max30102_FIFO_ReadWords(u8 Register_Address,u16 Word_Data[][2],u8 count)
{
	u8 i=0;
	u8 no = count;
	u8 data1, data2;
	/* 第1步:发起I2C总线启动信号 */
	MAX30102_IIC_Start();

	/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

	/* 第3步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第4步:发送字节地址, */
	MAX30102_IIC_Send_Byte((uint8_t)Register_Address);
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}
	

	/* 第6步:重新启动I2C总线。下面开始读取数据 */
	MAX30102_IIC_Start();

	/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_RD);	/* 此处是读指令 */

	/* 第8步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第9步:读取数据 */
	while (no)
	{
		data1 = MAX30102_IIC_Read_Byte(0);	
		MAX30102_IIC_Ack();
		data2 = MAX30102_IIC_Read_Byte(0);
		MAX30102_IIC_Ack();
		Word_Data[i][0] = (((u16)data1 << 8) | data2);  //

		
		data1 = MAX30102_IIC_Read_Byte(0);	
		MAX30102_IIC_Ack();
		data2 = MAX30102_IIC_Read_Byte(0);
		if(1==no)
			MAX30102_IIC_NAck();	/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
		else
			MAX30102_IIC_Ack();
		Word_Data[i][1] = (((u16)data1 << 8) | data2); 

		no--;	
		i++;
	}
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();
}

void max30102_FIFO_ReadBytes(u8 Register_Address,u8* Data)
{	
	max30102_Bus_Read(REG_INTR_STATUS_1);
	max30102_Bus_Read(REG_INTR_STATUS_2);
	
	/* 第1步:发起I2C总线启动信号 */
	MAX30102_IIC_Start();

	/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

	/* 第3步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第4步:发送字节地址, */
	MAX30102_IIC_Send_Byte((uint8_t)Register_Address);
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}
	

	/* 第6步:重新启动I2C总线。下面开始读取数据 */
	MAX30102_IIC_Start();

	/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_RD);	/* 此处是读指令 */

	/* 第8步:发送ACK */
	if (MAX30102_IIC_Wait_Ack() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第9步:读取数据 */
	Data[0] = MAX30102_IIC_Read_Byte(1);	
	Data[1] = MAX30102_IIC_Read_Byte(1);	
	Data[2] = MAX30102_IIC_Read_Byte(1);	
	Data[3] = MAX30102_IIC_Read_Byte(1);
	Data[4] = MAX30102_IIC_Read_Byte(1);	
	Data[5] = MAX30102_IIC_Read_Byte(0);
	/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
	/* 发送I2C总线停止信号 */
	MAX30102_IIC_Stop();
}

void MAX30102_INT_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
 	RCC_AHB1PeriphClockCmd(MAX30102_INT_CLK,ENABLE);	
	GPIO_InitStructure.GPIO_Pin  = MAX30102_INT_PIN;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
 	GPIO_Init(MAX30102_INT_PORT, &GPIO_InitStructure);
}

//初始化IIC
void MAX30102_IIC_Init(void)
{					     
	GPIO_InitTypeDef GPIO_InitStructure;

	RCC_AHB1PeriphClockCmd(MAX30102_IIC_CLK, ENABLE);	/* 打开GPIO时钟 */

	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
	GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;  
	GPIO_InitStructure.GPIO_Pin = MAX30102_IIC_SCL_PIN;
	GPIO_Init(MAX30102_IIC_PORT, &GPIO_InitStructure);
	GPIO_InitStructure.GPIO_Pin = MAX30102_IIC_SDA_PIN;
	GPIO_Init(MAX30102_IIC_PORT, &GPIO_InitStructure);

	/* 给一个停止信号, 复位I2C总线上的所有设备到待机模式 */
	MAX30102_IIC_SDA=1;	  	  
	MAX30102_IIC_SCL=1;
	MAX30102_IIC_Stop();
}

void MAX30102_Init(void)
{
	MAX30102_INT_Init();
	MAX30102_IIC_Init();
	MAX30102_Reset();
	
	max30102_Bus_Write(REG_INTR_ENABLE_1,0xc0);	// INTR setting
	max30102_Bus_Write(REG_INTR_ENABLE_2,0x00);
	max30102_Bus_Write(REG_FIFO_WR_PTR,0x00);  	//FIFO_WR_PTR[4:0]
	max30102_Bus_Write(REG_OVF_COUNTER,0x00);  	//OVF_COUNTER[4:0]
	max30102_Bus_Write(REG_FIFO_RD_PTR,0x00);  	//FIFO_RD_PTR[4:0]
	max30102_Bus_Write(REG_FIFO_CONFIG,0x0f);  	//sample avg = 1, fifo rollover=false, fifo almost full = 17
	max30102_Bus_Write(REG_MODE_CONFIG,0x03);  	//0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
	max30102_Bus_Write(REG_SPO2_CONFIG,0x27);  	// SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)  
	max30102_Bus_Write(REG_LED1_PA,0x24);   	//Choose value for ~ 7mA for LED1
	max30102_Bus_Write(REG_LED2_PA,0x24);   	// Choose value for ~ 7mA for LED2
	max30102_Bus_Write(REG_PILOT_PA,0x7f);   	// Choose value for ~ 25mA for Pilot LED
}

void MAX30102_Reset(void)
{
	max30102_Bus_Write(REG_MODE_CONFIG,0x40);
	max30102_Bus_Write(REG_MODE_CONFIG,0x40);
}

void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data)
{
//  char ach_i2c_data[2];
//  ach_i2c_data[0]=uch_addr;
//  ach_i2c_data[1]=uch_data;
//	
//  MAX30102_IIC_WriteBytes(I2C_WRITE_ADDR, ach_i2c_data, 2);
	MAX30102_IIC_Write_One_Byte(I2C_WRITE_ADDR,uch_addr,uch_data);
}

void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data)
{
//  char ch_i2c_data;
//  ch_i2c_data=uch_addr;
//  MAX30102_IIC_WriteBytes(I2C_WRITE_ADDR, &ch_i2c_data, 1);
//	
//  i2c.read(I2C_READ_ADDR, &ch_i2c_data, 1);
//  
//   *puch_data=(uint8_t) ch_i2c_data;
	MAX30102_IIC_Read_One_Byte(I2C_WRITE_ADDR,uch_addr,puch_data);
}

void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led)
{
	uint32_t un_temp;
	unsigned char uch_temp;
	char ach_i2c_data[6];
	*pun_red_led=0;
	*pun_ir_led=0;

  
  //read and clear status register
  maxim_max30102_read_reg(REG_INTR_STATUS_1, &uch_temp);
  maxim_max30102_read_reg(REG_INTR_STATUS_2, &uch_temp);
  
  MAX30102_IIC_ReadBytes(I2C_WRITE_ADDR,REG_FIFO_DATA,(u8 *)ach_i2c_data,6);
  
  un_temp=(unsigned char) ach_i2c_data[0];
  un_temp<<=16;
  *pun_red_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[1];
  un_temp<<=8;
  *pun_red_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[2];
  *pun_red_led+=un_temp;
  
  un_temp=(unsigned char) ach_i2c_data[3];
  un_temp<<=16;
  *pun_ir_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[4];
  un_temp<<=8;
  *pun_ir_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[5];
  *pun_ir_led+=un_temp;
  *pun_red_led&=0x03FFFF;  //Mask MSB [23:18]
  *pun_ir_led&=0x03FFFF;  //Mask MSB [23:18]
}

//MAX30102引脚输出模式控制
void MAX30102_IIC_SDA_OUT(void)//SDA输出方向配置
{
	GPIO_InitTypeDef GPIO_InitStructure;	
	
	GPIO_InitStructure.GPIO_Pin=MAX30102_IIC_SDA_PIN;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT;//SDA推挽输出
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;  
	GPIO_Init(MAX30102_IIC_PORT,&GPIO_InitStructure); 						

}

void MAX30102_IIC_SDA_IN(void)//SDA输入方向配置
{
	GPIO_InitTypeDef GPIO_InitStructure;	
	
	GPIO_InitStructure.GPIO_Pin=MAX30102_IIC_SDA_PIN;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 
	GPIO_Init(MAX30102_IIC_PORT,&GPIO_InitStructure);
}


//产生IIC起始信号
void MAX30102_IIC_Start(void)
{
	MAX30102_IIC_SDA_OUT();     //sda线输出
	MAX30102_IIC_SDA=1;	  	  
	MAX30102_IIC_SCL=1;
	delay_us(4);
 	MAX30102_IIC_SDA=0;//START:when CLK is high,DATA change form high to low 
	delay_us(4);
	MAX30102_IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 
}	  
//产生IIC停止信号
void MAX30102_IIC_Stop(void)
{
	MAX30102_IIC_SDA_OUT();//sda线输出
	MAX30102_IIC_SCL=0;
	MAX30102_IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
 	delay_us(4);
	MAX30102_IIC_SCL=1; 
	MAX30102_IIC_SDA=1;//发送I2C总线结束信号
	delay_us(4);							   	
}
//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 MAX30102_IIC_Wait_Ack(void)
{
	u8 ucErrTime=0;
	MAX30102_IIC_SDA_IN();      //SDA设置为输入  
	MAX30102_IIC_SDA=1;delay_us(1);	   
	MAX30102_IIC_SCL=1;delay_us(1);	 
	while(MAX30102_READ_SDA)
	{
		ucErrTime++;
		if(ucErrTime>250)
		{
			MAX30102_IIC_Stop();
			return 1;
		}
	}
	MAX30102_IIC_SCL=0;//时钟输出0 	   
	return 0;  
} 
//产生ACK应答
void MAX30102_IIC_Ack(void)
{
	MAX30102_IIC_SCL=0;
	MAX30102_IIC_SDA_OUT();
	MAX30102_IIC_SDA=0;
	delay_us(2);
	MAX30102_IIC_SCL=1;
	delay_us(2);
	MAX30102_IIC_SCL=0;
}
//不产生ACK应答		    
void MAX30102_IIC_NAck(void)
{
	MAX30102_IIC_SCL=0;
	MAX30102_IIC_SDA_OUT();
	MAX30102_IIC_SDA=1;
	delay_us(2);
	MAX30102_IIC_SCL=1;
	delay_us(2);
	MAX30102_IIC_SCL=0;
}					 				     
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答			  
void MAX30102_IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
	MAX30102_IIC_SDA_OUT(); 	    
    MAX30102_IIC_SCL=0;//拉低时钟开始数据传输
    for(t=0;t<8;t++)
    {              
        MAX30102_IIC_SDA=(txd&0x80)>>7;
        txd<<=1; 	  
		delay_us(2);   //对TEA5767这三个延时都是必须的
		MAX30102_IIC_SCL=1;
		delay_us(2); 
		MAX30102_IIC_SCL=0;	
		delay_us(2);
    }	 
} 	    
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 MAX30102_IIC_Read_Byte(unsigned char ack)
{
	unsigned char i,receive=0;
	MAX30102_IIC_SDA_IN();//SDA设置为输入
    for(i=0;i<8;i++ )
	{
        MAX30102_IIC_SCL=0; 
        delay_us(2);
		MAX30102_IIC_SCL=1;
        receive<<=1;
        if(MAX30102_READ_SDA)receive++;   
		delay_us(1); 
    }					 
    if (!ack)
        MAX30102_IIC_NAck();//发送nACK
    else
        MAX30102_IIC_Ack(); //发送ACK   
    return receive;
}


void MAX30102_IIC_WriteBytes(u8 WriteAddr,u8* data,u8 dataLength)
{		
	u8 i;	
    MAX30102_IIC_Start();  

	MAX30102_IIC_Send_Byte(WriteAddr);	    //发送写命令
	MAX30102_IIC_Wait_Ack();
	
	for(i=0;i<dataLength;i++)
	{
		MAX30102_IIC_Send_Byte(data[i]);
		MAX30102_IIC_Wait_Ack();
	}				    	   
    MAX30102_IIC_Stop();//产生一个停止条件 
	delay_ms(10);	 
}

void MAX30102_IIC_ReadBytes(u8 deviceAddr, u8 writeAddr,u8* data,u8 dataLength)
{		
	u8 i;	
    MAX30102_IIC_Start();  

	MAX30102_IIC_Send_Byte(deviceAddr);	    //发送写命令
	MAX30102_IIC_Wait_Ack();
	MAX30102_IIC_Send_Byte(writeAddr);
	MAX30102_IIC_Wait_Ack();
	MAX30102_IIC_Send_Byte(deviceAddr|0X01);//进入接收模式			   
	MAX30102_IIC_Wait_Ack();
	
	for(i=0;i<dataLength-1;i++)
	{
		data[i] = MAX30102_IIC_Read_Byte(1);
	}		
	data[dataLength-1] = MAX30102_IIC_Read_Byte(0);	
    MAX30102_IIC_Stop();//产生一个停止条件 
	delay_ms(10);	 
}

void MAX30102_IIC_Read_One_Byte(u8 daddr,u8 addr,u8* data)
{				  	  	    																 
    MAX30102_IIC_Start();  
	
	MAX30102_IIC_Send_Byte(daddr);	   //发送写命令
	MAX30102_IIC_Wait_Ack();
	MAX30102_IIC_Send_Byte(addr);//发送地址
	MAX30102_IIC_Wait_Ack();		 
	MAX30102_IIC_Start();  	 	   
	MAX30102_IIC_Send_Byte(daddr|0X01);//进入接收模式			   
	MAX30102_IIC_Wait_Ack();	 
    *data = MAX30102_IIC_Read_Byte(0);		   
    MAX30102_IIC_Stop();//产生一个停止条件	    
}

void MAX30102_IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data)
{				   	  	    																 
    MAX30102_IIC_Start();  
	
	MAX30102_IIC_Send_Byte(daddr);	    //发送写命令
	MAX30102_IIC_Wait_Ack();
	MAX30102_IIC_Send_Byte(addr);//发送地址
	MAX30102_IIC_Wait_Ack();	   	 										  		   
	MAX30102_IIC_Send_Byte(data);     //发送字节							   
	MAX30102_IIC_Wait_Ack();  		    	   
    MAX30102_IIC_Stop();//产生一个停止条件 
	delay_ms(10);	 
}







const uint16_t auw_hamm[31]={ 41,    276,    512,    276,     41 }; //Hamm=  long16(512* hamming(5)');
//uch_spo2_table is computed as  -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ;
const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 
                            99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
                            100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 
                            97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 
                            90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 
                            80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67, 
                            66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50, 
                            49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 
                            28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5, 
                            3, 2, 1 } ;
static  int32_t an_dx[ BUFFER_SIZE-MA4_SIZE]; // delta
static  int32_t an_x[ BUFFER_SIZE]; //ir
static  int32_t an_y[ BUFFER_SIZE]; //red

void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer,  int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, 
                              int32_t *pn_heart_rate, int8_t  *pch_hr_valid)
/**
* \brief        Calculate the heart rate and SpO2 level
* \par          Details
*               By detecting  peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
*               Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
*               Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
*
* \param[in]    *pun_ir_buffer           - IR sensor data buffer
* \param[in]    n_ir_buffer_length      - IR sensor data buffer length
* \param[in]    *pun_red_buffer          - Red sensor data buffer
* \param[out]    *pn_spo2                - Calculated SpO2 value
* \param[out]    *pch_spo2_valid         - 1 if the calculated SpO2 value is valid
* \param[out]    *pn_heart_rate          - Calculated heart rate value
* \param[out]    *pch_hr_valid           - 1 if the calculated heart rate value is valid
*
* \retval       None
*/
{
    uint32_t un_ir_mean ,un_only_once ;
    int32_t k ,n_i_ratio_count;
    int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx;
    int32_t n_th1, n_npks,n_c_min;      
    int32_t an_ir_valley_locs[15] ;
    int32_t an_exact_ir_valley_locs[15] ;
    int32_t an_dx_peak_locs[15] ;
    int32_t n_peak_interval_sum;
    
    int32_t n_y_ac, n_x_ac;
    int32_t n_spo2_calc; 
    int32_t n_y_dc_max, n_x_dc_max; 
    int32_t n_y_dc_max_idx, n_x_dc_max_idx; 
    int32_t an_ratio[5],n_ratio_average; 
    int32_t n_nume,  n_denom ;
    // remove DC of ir signal    
    un_ir_mean =0; 
    for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ;
    un_ir_mean =un_ir_mean/n_ir_buffer_length ;
    for (k=0 ; k<n_ir_buffer_length ; k++ )  an_x[k] =  pun_ir_buffer[k] - un_ir_mean ; 
    
    // 4 pt Moving Average
    for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
        n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]);
        an_x[k]=  n_denom/(int32_t)4; 
    }

    // get difference of smoothed IR signal
    
    for( k=0; k<BUFFER_SIZE-MA4_SIZE-1;  k++)
        an_dx[k]= (an_x[k+1]- an_x[k]);

    // 2-pt Moving Average to an_dx
    for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){
        an_dx[k] =  ( an_dx[k]+an_dx[k+1])/2 ;
    }
    
    // hamming window
    // flip wave form so that we can detect valley with peak detector
    for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){
        s= 0;
        for( k=i; k<i+ HAMMING_SIZE ;k++){
            s -= an_dx[k] *auw_hamm[k-i] ; 
                     }
        an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm 
    }

 
    n_th1=0; // threshold calculation
    for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){
        n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ;
    }
    n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE);
    // peak location is acutally index for sharpest location of raw signal since we flipped the signal         
    maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks 

    n_peak_interval_sum =0;
    if (n_npks>=2){
        for (k=1; k<n_npks; k++)
            n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]);
        n_peak_interval_sum=n_peak_interval_sum/(n_npks-1);
        *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes
        *pch_hr_valid  = 1;
    }
    else  {
        *pn_heart_rate = -999;
        *pch_hr_valid  = 0;
    }
            
    for ( k=0 ; k<n_npks ;k++)
        an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2; 


    // raw value : RED(=y) and IR(=X)
    // we need to assess DC and AC value of ir and red PPG. 
    for (k=0 ; k<n_ir_buffer_length ; k++ )  {
        an_x[k] =  pun_ir_buffer[k] ; 
        an_y[k] =  pun_red_buffer[k] ; 
    }

    // find precise min near an_ir_valley_locs
    n_exact_ir_valley_locs_count =0; 
    for(k=0 ; k<n_npks ;k++){
        un_only_once =1;
        m=an_ir_valley_locs[k];
        n_c_min= 16777216;//2^24;
        if (m+5 <  BUFFER_SIZE-HAMMING_SIZE  && m-5 >0){
            for(i= m-5;i<m+5; i++)
                if (an_x[i]<n_c_min){
                    if (un_only_once >0){
                       un_only_once =0;
                   } 
                   n_c_min= an_x[i] ;
                   an_exact_ir_valley_locs[k]=i;
                }
            if (un_only_once ==0)
                n_exact_ir_valley_locs_count ++ ;
        }
    }
    if (n_exact_ir_valley_locs_count <2 ){
       *pn_spo2 =  -999 ; // do not use SPO2 since signal ratio is out of range
       *pch_spo2_valid  = 0; 
       return;
    }
    // 4 pt MA
    for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
        an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4;
        an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4;
    }

    //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
    //finding AC/DC maximum of raw ir * red between two valley locations
    n_ratio_average =0; 
    n_i_ratio_count =0; 
    
    for(k=0; k< 5; k++) an_ratio[k]=0;
    for (k=0; k< n_exact_ir_valley_locs_count; k++){
        if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){             
            *pn_spo2 =  -999 ; // do not use SPO2 since valley loc is out of range
            *pch_spo2_valid  = 0; 
            return;
        }
    }
    // find max between two valley locations 
    // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 

    for (k=0; k< n_exact_ir_valley_locs_count-1; k++){
        n_y_dc_max= -16777216 ; 
        n_x_dc_max= - 16777216; 
        if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){
            for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){
                if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; }
                if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;}
            }
            n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red
            n_y_ac=  an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k])  ; 
        
        
            n_y_ac=  an_y[n_y_dc_max_idx] - n_y_ac;    // subracting linear DC compoenents from raw 
            n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
            n_x_ac=  an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]); 
            n_x_ac=  an_x[n_y_dc_max_idx] - n_x_ac;      // subracting linear DC compoenents from raw 
            n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
            n_denom= ( n_x_ac *n_y_dc_max)>>7;
            if (n_denom>0  && n_i_ratio_count <5 &&  n_nume != 0)
            {   
                an_ratio[n_i_ratio_count]= (n_nume*20)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ;  ///*************************n_nume原来是*100************************//
                n_i_ratio_count++;
            }
        }
    }

    maxim_sort_ascend(an_ratio, n_i_ratio_count);
    n_middle_idx= n_i_ratio_count/2;

    if (n_middle_idx >1)
        n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median
    else
        n_ratio_average = an_ratio[n_middle_idx ];

    if( n_ratio_average>2 && n_ratio_average <184){
        n_spo2_calc= uch_spo2_table[n_ratio_average] ;
        *pn_spo2 = n_spo2_calc ;
        *pch_spo2_valid  = 1;//  float_SPO2 =  -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ;  // for comparison with table
    }
    else{
        *pn_spo2 =  -999 ; // do not use SPO2 since signal ratio is out of range
        *pch_spo2_valid  = 0; 
    }
}


void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
/**
* \brief        Find peaks
* \par          Details
*               Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
*
* \retval       None
*/
{
    maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height );
    maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance );
    *pn_npks = min( *pn_npks, n_max_num );
}

void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t  *pn_x, int32_t n_size, int32_t n_min_height)
/**
* \brief        Find peaks above n_min_height
* \par          Details
*               Find all peaks above MIN_HEIGHT
*
* \retval       None
*/
{
    int32_t i = 1, n_width;
    *pn_npks = 0;
    
    while (i < n_size-1){
        if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){            // find left edge of potential peaks
            n_width = 1;
            while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width])    // find flat peaks
                n_width++;
            if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){                            // find right edge of peaks
                pn_locs[(*pn_npks)++] = i;        
                // for flat peaks, peak location is left edge
                i += n_width+1;
            }
            else
                i += n_width;
        }
        else
            i++;
    }
}


void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
/**
* \brief        Remove peaks
* \par          Details
*               Remove peaks separated by less than MIN_DISTANCE
*
* \retval       None
*/
{
    
    int32_t i, j, n_old_npks, n_dist;
    
    /* Order peaks from large to small */
    maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks );

    for ( i = -1; i < *pn_npks; i++ ){
        n_old_npks = *pn_npks;
        *pn_npks = i+1;
        for ( j = i+1; j < n_old_npks; j++ ){
            n_dist =  pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1
            if ( n_dist > n_min_distance || n_dist < -n_min_distance )
                pn_locs[(*pn_npks)++] = pn_locs[j];
        }
    }

    // Resort indices longo ascending order
    maxim_sort_ascend( pn_locs, *pn_npks );
}

void maxim_sort_ascend(int32_t *pn_x,int32_t n_size) 
/**
* \brief        Sort array
* \par          Details
*               Sort array in ascending order (insertion sort algorithm)
*
* \retval       None
*/
{
    int32_t i, j, n_temp;
    for (i = 1; i < n_size; i++) {
        n_temp = pn_x[i];
        for (j = i; j > 0 && n_temp < pn_x[j-1]; j--)
            pn_x[j] = pn_x[j-1];
        pn_x[j] = n_temp;
    }
}

void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
/**
* \brief        Sort indices
* \par          Details
*               Sort indices according to descending order (insertion sort algorithm)
*
* \retval       None
*/ 
{
    int32_t i, j, n_temp;
    for (i = 1; i < n_size; i++) {
        n_temp = pn_indx[i];
        for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--)
            pn_indx[j] = pn_indx[j-1];
        pn_indx[j] = n_temp;
    }
}


#define MAX_BRIGHTNESS 255
#define INTERRUPT_REG 0X00

/* 	VCC<->3.3V
	GND<->GND
	SCL<->PB7
	SDA<->PB8
	INT<->PB9*/

uint32_t aun_ir_buffer[500]; 	 //IR LED   红外光数据,用于计算血氧
int32_t n_ir_buffer_length;    //数据长度
uint32_t aun_red_buffer[500];  //Red LED	红光数据,用于计算心率曲线以及计算心率
int32_t n_sp02; //SPO2值
int8_t ch_spo2_valid;   //用于显示SP02计算是否有效的指示符
int32_t n_heart_rate;   //心率值
int8_t  ch_hr_valid;    //用于显示心率计算是否有效的指示符

uint8_t Temp;

uint32_t un_min, un_max, un_prev_data;  
int i;
int32_t n_brightness;
float f_temp;
//u8 temp_num=0;
u8 temp[6];
u8 str[100];
u8 dis_hr=0,dis_spo2=0;
extern uint8_t max_int_flag;
void Get_MAX30102_Data(void)
{
	un_min=0x3FFFF;
	un_max=0;
	
	//显示“心率:”
	//Gui_DrawFont_GBK16(0,0,BLUE,GRAY0, "Heart:");
	//Gui_DrawFont_GBK16(0,40,BLUE,GRAY0, "Blood:");

	n_ir_buffer_length=500; //缓冲区长度为100,可存储以100sps运行的5秒样本
	//读取前500个样本,并确定信号范围
	for(i=0;i<n_ir_buffer_length;i++)
	{
			//while(MAX30102_INT==1);   //等待,直到中断引脚断言
			max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
			aun_red_buffer[i] =  (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2];    // 将值合并得到实际数字
			aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5];   	 // 将值合并得到实际数字
					
			if(un_min>aun_red_buffer[i])
					un_min=aun_red_buffer[i];    //更新计算最小值
			if(un_max<aun_red_buffer[i])
					un_max=aun_red_buffer[i];    //更新计算最大值
	}
	un_prev_data=aun_red_buffer[i];
	
	//计算前500个样本(前5秒的样本)后的心率和血氧饱和度
	maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); 
	
	while(1)
	{
		//舍去前100组样本,并将后400组样本移到顶部,将100~500缓存数据移位到0~400
			for(i=100;i<500;i++)
			{
					aun_red_buffer[i-100]=aun_red_buffer[i];	//将100-500缓存数据移位到0-400
					aun_ir_buffer[i-100]=aun_ir_buffer[i];		//将100-500缓存数据移位到0-400
					
					//update the signal min and max
					if(un_min>aun_red_buffer[i])			//寻找移位后0-400中的最小值
					un_min=aun_red_buffer[i];
					if(un_max<aun_red_buffer[i])			//寻找移位后0-400中的最大值
					un_max=aun_red_buffer[i];
			}
			
			//在计算心率前取100组样本,取的数据放在400-500缓存数组中
			for(i=400;i<500;i++)
			{
					un_prev_data=aun_red_buffer[i-1];	//在计算心率前取100组样本,取的数据放在400-500缓存数组中
					//while(MAX30102_INT==1);
					max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);		//读取传感器数据,赋值到temp中
					aun_red_buffer[i] =  (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2];    //将值合并得到实际数字,数组400-500为新读取数据
					aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5];   	//将值合并得到实际数字,数组400-500为新读取数据
					if(aun_red_buffer[i]>un_prev_data)		//用新获取的一个数值与上一个数值对比
					{
							f_temp=aun_red_buffer[i]-un_prev_data;
							f_temp/=(un_max-un_min);
							f_temp*=MAX_BRIGHTNESS;			//公式(心率曲线)=(新数值-旧数值)/(最大值-最小值)*255
							n_brightness-=(int)f_temp;
							if(n_brightness<0)
									n_brightness=0;
					}
					else
					{
							f_temp=un_prev_data-aun_red_buffer[i];
							f_temp/=(un_max-un_min);
							f_temp*=MAX_BRIGHTNESS;			//公式(心率曲线)=(旧数值-新数值)/(最大值-最小值)*255
							n_brightness+=(int)f_temp;
							if(n_brightness>MAX_BRIGHTNESS)
									n_brightness=MAX_BRIGHTNESS;
					}
			//通过UART将样本和计算结果发送到终端程序
			if(ch_hr_valid == 1 && n_heart_rate<120)//**/ ch_hr_valid == 1 && ch_spo2_valid ==1 && n_heart_rate<120 && n_sp02<101
			{
				dis_hr = n_heart_rate;
				dis_spo2 = n_sp02;
			}
			else
			{
				dis_hr = 0;
				dis_spo2 = 0;
			}
		}
		maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);

		LCD_Show_Info(0,40, "Heart: %d  BMP", dis_hr);
		LCD_Show_Info(0,80, "Blood: %d  %", dis_spo2);
		delay_ms(1000);
	}
}

max30102.h

#ifndef __MAX30102_H
#define __MAX30102_H

#include "main.h"
#include "stdbool.h"

// 位带操作宏定义
#define BITBAND(addr, bitnum) ((0x42000000 + ((addr - 0x40000000) * 32) + (bitnum * 4))) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 

// IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+0x14)  // 0x40020014 
#define GPIOB_ODR_Addr    (GPIOB_BASE+0x14)  // 0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+0x14)  // 0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+0x14)  // 0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+0x14)  // 0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+0x14)  // 0x40021414 
#define GPIOG_ODR_Addr    (GPIOG_BASE+0x14)  // 0x40021814 
#define GPIOH_ODR_Addr    (GPIOH_BASE+0x14)  // 0x40021C14 
#define GPIOI_ODR_Addr    (GPIOI_BASE+0x14)  // 0x40022014

#define GPIOA_IDR_Addr    (GPIOA_BASE+0x10)  // 0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+0x10)  // 0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+0x10)  // 0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+0x10)  // 0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+0x10)  // 0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+0x10)  // 0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+0x10)  // 0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+0x10)  // 0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+0x10)  // 0x40022010
 
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //输入


//==============================================MAX30102硬件接口==================================================
#define		MAX30102_IIC_CLK				RCC_AHB1Periph_GPIOB
#define		MAX30102_IIC_PORT				GPIOB
#define		MAX30102_IIC_SCL_PIN			GPIO_Pin_6
#define		MAX30102_IIC_SDA_PIN			GPIO_Pin_7

#define 	MAX30102_IIC_SCL				PBout(6)
#define 	MAX30102_IIC_SDA				PBout(7)
#define 	MAX30102_READ_SDA   			PBin(7)  //输入SDA 

#define		MAX30102_INT_CLK				RCC_AHB1Periph_GPIOB
#define		MAX30102_INT_PORT				GPIOB
#define		MAX30102_INT_PIN		    	GPIO_Pin_8
#define		MAX30102_INT           		 	PBin(8)
//#define		MAX30102_INT           		 	GPIO_ReadInputDataBit(MAX30102_INT_PORT, MAX30102_INT_PIN)
//=============================================================================================================

 	  

#define I2C_WR	0		/* 写控制bit */
#define I2C_RD	1		/* 读控制bit */

#define I2C_WRITE_ADDR 0xAE
#define I2C_READ_ADDR 0xAF


#define true 1
#define false 0
#define FS 100
#define BUFFER_SIZE  (FS* 5) 
#define HR_FIFO_SIZE 7
#define MA4_SIZE  4 // DO NOT CHANGE
#define HAMMING_SIZE  5// DO NOT CHANGE
#define min(x,y) ((x) < (y) ? (x) : (y))



#define max30102_WR_address 0xAE

#define I2C_WRITE_ADDR 0xAE
#define I2C_READ_ADDR 0xAF

//register addresses
#define REG_INTR_STATUS_1 0x00
#define REG_INTR_STATUS_2 0x01
#define REG_INTR_ENABLE_1 0x02
#define REG_INTR_ENABLE_2 0x03
#define REG_FIFO_WR_PTR 0x04
#define REG_OVF_COUNTER 0x05
#define REG_FIFO_RD_PTR 0x06
#define REG_FIFO_DATA 0x07
#define REG_FIFO_CONFIG 0x08
#define REG_MODE_CONFIG 0x09
#define REG_SPO2_CONFIG 0x0A
#define REG_LED1_PA 0x0C
#define REG_LED2_PA 0x0D
#define REG_PILOT_PA 0x10
#define REG_MULTI_LED_CTRL1 0x11
#define REG_MULTI_LED_CTRL2 0x12
#define REG_TEMP_INTR 0x1F
#define REG_TEMP_FRAC 0x20
#define REG_TEMP_CONFIG 0x21
#define REG_PROX_INT_THRESH 0x30
#define REG_REV_ID 0xFE
#define REG_PART_ID 0xFF


//IIC所有操作函数
void MAX30102_IIC_Init(void);                //初始化IIC的IO口				 
void MAX30102_IIC_Start(void);				//发送IIC开始信号
void MAX30102_IIC_Stop(void);	  			//发送IIC停止信号
void MAX30102_IIC_Send_Byte(u8 txd);			//IIC发送一个字节
u8 MAX30102_IIC_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 MAX30102_IIC_Wait_Ack(void); 				//IIC等待ACK信号
void MAX30102_IIC_Ack(void);					//IIC发送ACK信号
void MAX30102_IIC_NAck(void);				//IIC不发送ACK信号

void MAX30102_IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
void MAX30102_IIC_Read_One_Byte(u8 daddr,u8 addr,u8* data);

void MAX30102_IIC_WriteBytes(u8 WriteAddr,u8* data,u8 dataLength);
void MAX30102_IIC_ReadBytes(u8 deviceAddr, u8 writeAddr,u8* data,u8 dataLength);

//MAX30102所有操作函数
void MAX30102_Init(void);  
void MAX30102_Reset(void);
u8 M30102_Bus_Write(u8 Register_Address, u8 Word_Data);
u8 max30102_Bus_Read(u8 Register_Address);
void max30102_FIFO_ReadWords(u8 Register_Address,u16  Word_Data[][2],u8 count);
void max30102_FIFO_ReadBytes(u8 Register_Address,u8* Data);

void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data);
void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data);
void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led);

//心率血氧算法所有函数
void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer ,  int32_t n_ir_buffer_length, uint32_t *pun_red_buffer ,   int32_t *pn_spo2, int8_t *pch_spo2_valid ,  int32_t *pn_heart_rate , int8_t  *pch_hr_valid);
void maxim_find_peaks( int32_t *pn_locs, int32_t *pn_npks,  int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num );
void maxim_peaks_above_min_height( int32_t *pn_locs, int32_t *pn_npks,  int32_t *pn_x, int32_t n_size, int32_t n_min_height );
void maxim_remove_close_peaks( int32_t *pn_locs, int32_t *pn_npks,   int32_t  *pn_x, int32_t n_min_distance );
void maxim_sort_ascend( int32_t *pn_x, int32_t n_size );
void maxim_sort_indices_descend(  int32_t  *pn_x, int32_t *pn_indx, int32_t n_size);

void Get_MAX30102_Data(void);
#endif

main.c

int main(void)
{
	MAX30102_Init();
    Get_MAX30102_Data();
	while (1)
	{
	}
}

效果演示

标签:血氧,--,void,STM32,u8,IIC,pn,MAX30102,define
From: https://blog.csdn.net/MOS_JBET/article/details/141783851

相关文章

  • emark认证和ce认证有什么区别
    当我们探讨emark认证和CE认证之间的区别时,首先要明确的是,这两种认证都是欧洲市场中常见的产品合规性要求,但它们各自的目标、范围和流程存在显著的不同。下面,我们将详细解析这两种认证之间的主要差异。一、认证目标与应用范围emark认证,也被称为E-mark认证,是欧洲经济委员会(ECE)针对车......
  • WIFI空口包在Wireshark中过滤条件
    一)三大类WIFI包过滤wlan.fc.type==0管理帧wlan.fc.type==1控制帧wlan.fc.type==2数据帧二)管理帧AssociationReq/Rspwlan.fc.type_subtype==0x0000||wlan.fc.type_subtype==0x0001ReassociationReq/Rspwlan.fc.type_subtype==0x00002||wlan.fc.type......
  • CLion 配置 Qt 开发环境
    https://blog.csdn.net/theRavensea/article/details/136534197 录CLion配置Qt开发环境环境说明基本配置1.创建Qt项目2.设置CLion工具链3.配置外部工具一些问题的补充CLion配置Qt开发环境环境说明操作系统:Windows10CLion版本:2023.3.4CMake版本:3.27.7Qt6版本:6.6.2(......
  • 【STM32项目设计】STM32F411健康助手--MPU6050陀螺仪驱动(6)
    硬件设计 软件设计此项目使用的是软件I2C,MPU6050的SCL连接到STM32的PB10,SDA连接到STM32的PB9mpuiic.c#include"mpuiic.h"#include"delay.h"//MPUIIC延时函数voidMPU_IIC_Delay(void){ delay_us(2);}//初始化IICvoidMPU_IIC_Init(void){ GPIO_Init......
  • PHP代码注释:提升代码可读性的秘诀
    在软件开发的世界里,代码注释被视为编程的最佳实践之一。在PHP开发中,良好的注释习惯对于提高代码的可读性和维护性至关重要。本文将探讨PHP代码注释的重要性,并提供一些实用的注释技巧。一、代码注释的重要性提高可读性:注释可以帮助其他开发者(或未来的你)快速理解代码的功能和逻辑。便......
  • AI绘画: ComfyUI重磅更新!操作界面详解!取消悬浮面板,自带工装包作流管理功能!(附整合包)
    前言大家好,我是月月在7月初的一次更新中,ComfyUI官方推出了Beta版UI,取消了原本的悬浮面板,还新增了工作流管理功能,整体使用体验比之前好了很多。今天就为大家详细介绍一些新版UI的特点和用法。一、启用方式如果想启用最新的UI界面,需要将ComfyUI更新到最新版本......
  • 开发指南023-生成参赛证
    赛事平台业务上需要生成参赛证或奖状,平台采用定义PDF模板,使用ITEXT操作PDF文件,使用信息填充的技术路线。其中最核心的函数是:<groupId>org.qlm</groupId><artifactId>qlm-utils-pdf</artifactId><version>1.0-SNAPSHOT</version>publicclassPDFTools{publicstaticvoid......
  • webflux使用
    1.生成Mono对象privateMono<String>getEosDuplicateLastScanId(EosProjecteosProject){Mono<String>scanIdMono=webClient.get().uri(uriBuilder->UriComponentsBuilder.fromHttpUrl(HOST)......
  • 关于Vue2和Vue3的区别及组合式/选项式API区别——高频面试题
    1、vue2和vue3的区别以下包含但不仅仅只有这10条区别但是,在应对面试时,回答已经足够用了,这些也是vue2和vue3的主要区别CompositionAPIvsOptionsAPICompositionAPI:组合式APIOptionsAPI:选项式API——在vue2中使用它们两者在vue3中是组织代码的不同方式Vue3引入了Com......
  • 基于JAVA 小程序 旅游推荐管理系统,旅行系统
    目录一.研究目的二.系统分析三.系统流程和逻辑四.数据库设计五.页面展示六.源码获取一.研究目的随着互联网技术的快速发展,网络时代的到来,网络信息也将会改变当今社会。各行各业在日常企业经营管理等方面也在慢慢的向规范化和网络化趋势汇合。旅游社交小程序的信息化......