首页 > 其他分享 >BUSFIN 711 – FINANCIAL ANALYTICS APPLICATIONS

BUSFIN 711 – FINANCIAL ANALYTICS APPLICATIONS

时间:2024-09-05 08:56:51浏览次数:10  
标签:FINANCIAL manuscript format BUSFIN should ANALYTICS figures using your

BUSFIN 711 – FINANCIAL ANALYTICS APPLICATIONS

Assignment 3: Project

DUE: 4PM, FRIDAY 6 SEP 2024

General

  • This is an individual assignment.
  • The assignment is marked out of 100 marks and worth 40% of your overall grade

for this course.

  • Please submit online through Canvas by the due date.
  • In this course, students are prohibited from using generative artificial intelligence

text and art generation software, such as ChatGPT and DALL.E, to produce output

that is used directly as part of their assessments. The work you submit must be

substantially your own work, you must carry out your own analysis and write your

own text. You may use AI tools as a source of information or to help generate

ideas. However, you should take care to check the accuracy of information

provided by AI tools and where appropriate you should go back to the original

source of information.

  • If you use external sources, you must provide references. This can either be done

in APA style or ‘professional style’ which should identify at a minimum the source,

author and date where applicable. You do not need to reference the lecture notes.

If you are referencing information obtained from AI tools, you should reference

the original source of the information, not the AI tool.

  • Late submissions will lose 24% of marks for each day they are late.

Overall requirements

The purpose of this assignment is to write a manuscript with Quarto. You choose a

question you want to explore using one of the two datasets provided. To perform well on

this assignment, 代 写BUSFIN 711 – FINANCIAL ANALYTICS APPLICATIONS you should demonstrate a solid understanding of the Quarto manuscript

format and relevant Python techniques that have been covered in the course so far.

The two datasets you can choose from to create your manuscript and answer your

question are:

  • Election data: P00000001-ALL.csv on https://github.com/wesm/pydata

book/tree/3rd-edition/datasets/fec

  • Patent data: KPSS_2022.csv on https://github.com/KPSS2017/Technological

Innovation-Resource-Allocation-and-Growth-Extended-DataChoose only one of these datasets. Do not use both of the datasets.

You should develop a question to explore and answer using the Quarto manuscript that

you will build based on your chosen dataset.

Detailed instructions

Submission format:

(1) Create an empty folder for Assignment 3.

(2) Create a Quarto manuscript project and store it in the folder created in Step 1.

Change the name of the index.qmd to 0_main_file.qmd.

(3) Develop your manuscript to meet requirements of reproducible analytical

pipelines and to produce a convincing manuscript.

(4) Compress the folder created in Step 1 and submit the compressed file to Canvas.

Meet requirements of reproducible analytical pipelines:

(1) Main content: The manuscript you create should be reproducible. Specifically,

numbers, figures, and tables should be traceable back to your code.

(2) Output format: HTML, Word, and PDF. You should make sure your manuscript

can be easily and automatically outputted as all these three formats.

Hint: Before submission, remember to click on Word and PDF within VS Code

preview to ensure these formats work properly.

(3) Article notebook (or qmd file):Please ensure your article notebook appears

properly in the html format of the manuscript.

(4) Other notebooks (or qmd file): At least one additional notebook should appear in

the html format of the manuscript.

Hint: You can consider putting code related to figures into this notebook. Then

import figures generated from this script using Quarto external embeds.

Meet requirements of a convincing manuscript:

(1) Your story is convincing and gets good support from your codes, numbers,

figures, tables, equations, and descriptions.

(2) Your writing should be more than 1,000 words, but no more than 2,000

words.

(3) You should divide your writing into multiple sections. Any references should be

properly listed at the end of the manuscript.

(4) Your manuscript should demonstrate a good understanding of automatic cross

references, including figures, tables, equations, and sections.

(5) Please consider using relevant markdown techniques covered in the course to

make your manuscript more readable.

标签:FINANCIAL,manuscript,format,BUSFIN,should,ANALYTICS,figures,using,your
From: https://www.cnblogs.com/qq--99515681/p/18396993

相关文章

  • CPT206 Computer Programming for Financial
    CPT206ComputerProgrammingforFinancialMathematics:CourseworkResitTaskSpecificationThomasSeligSet:Monday,22July,2024Duedate:Sunday,4August,2024,23:59ThisisthespecificationtasksheetfortheCourseworkresitassessmentofyourC......
  • INFS5710 Information Business Analytics
    INFS5710 InformationTechnology Infrastructurefor BusinessAnalyticsProjectStatement(Due by noon 12 PM on Monday29July2024via Moodle)• This project accounts for 25% of the total marks for this course.• Thedeliverablesarea......
  • ACFI3008 Financial Analysis and Valuation
    ACFI3008FinancialAnalysisandValuationTrimester2,20241. BelowisanarticlepublishedonThe Motley Fool,August7, 10:39amAESTWhyistheResMedsharepricesinkingagainonMonday?ResMedsharesarehavingaverytoughtimethismonth.TheMotl......
  • Fundamentals of Machine Learning for Predictive Data Analytics Algorithms, Worke
    主要内容:本书介绍了机器学习在预测数据分析中的基本原理、算法、实例和案例研究,涵盖了从数据到决策的整个过程。书中涉及机器学习项目生命周期的各个方面,包括数据准备、特征设计和模型部署。结构:本书分为五个部分,共计14章和若干附录:引言(IntroductiontoMachineLearn......
  • Financial Analysis with Python
    Project1OverviewandfilesProject1PleasereviewallthematerialfromthefollowingLecturesbeforecompletingthisassessment:Lecture1-FinancialAnalysiswithPython:DownloadingStockPricesLecture2-Python:TheBuildingBlocksLecture3-P......
  • 复述生成任务分类-笔记-Task-Oriented Paraphrase Analytics
    目录前言正文 复述生成和搜索引擎查询建议和扩展建议(QuerySuggestionandExpansion)复述生成和数据集数据增强(DataAugmentation):生成保持类别标签的合成数据,用于增加训练或测试数据集。信息安全和复述生成对抗样本生成(AdversarialExampleGeneration):保留标......
  • Advanced Data Analytics Using Python_ With Machine Learning, Deep Learning and N
    本书提供了使用Python进行高级数据分析的方法,涵盖了机器学习、深度学习和自然语言处理的应用实例。书中详细讲解了如何在不同的数据库环境中进行数据提取、转换和加载(ETL),并探讨了监督学习、无监督学习、深度学习、时间序列分析以及大规模数据分析的相关内容。目录简介为......
  • Financial - 直接合约,基差合约,期差合约
    直接合约,基差合约,期差合约三个的区别如下:1、直接合约:直接合约是指即时交割的合约,买卖双方立即达成交易并履行合约。在外汇市场中,即时交割的外汇交易就是一种直接合约。直接合约没有期限限制,交割时间通常是T+0或稍晚。2、基差合约:基差合约是指衍生品合约与现货标的物之间的价格......
  • Large Language Models as Financial Data Annotators: A Study on Effectiveness and
    本文是LLM系列文章,针对《LargeLanguageModelsasFinancialDataAnnotators:AStudyonEffectivenessandEfficiency》的翻译。作为财务数据注释器的大型语言模型:有效性和效率研究摘要引言相关工作数据集实验结果讨论局限性结论摘要由于缺乏领域专......
  • 中电金信:The Financial-Grade Digital Infrastructure
    01ProductIntroduction  TheFinancial-GradeDigitalInfrastructureisadigitally-enabledfoundationalframeworkdesignedforcriticalindustries,especiallythefinancialsector.Itfollowsasystematicengineeringmethodologytovalidate,customize,a......