首页 > 其他分享 >魔乐社区体验:探索Llama 3.1模型微调之旅

魔乐社区体验:探索Llama 3.1模型微调之旅

时间:2024-09-04 14:54:27浏览次数:10  
标签:社区 模型 微调 魔乐 Llama 3.1

在2024年的AI领域,Meta发布的Llama 3.1模型无疑成为了研究者和开发者的新宠。我有幸通过魔乐社区提供的资源,对这一模型进行了深入的学习和实践。在这个过程中,魔乐社区的资源和支持给我留下了深刻的印象。

环境准备的便捷性

魔乐社区提供的实践指导非常详尽,从安装Ascend CANN Toolkit和Kernels到openMind Library以及openMind Hub Client的安装,每一步都有清晰的命令和说明。这大大简化了环境搭建的过程,即使是对于新手来说,也能够快速上手。

魔乐社区体验:探索Llama 3.1模型微调之旅_数据集

模型下载与推理的直观体验

通过魔乐社区提供的链接,用户能够轻松下载Llama 3.1模型,并使用openMind Library和LLaMa Factory进行模型推理。实践指导中的示例代码和配置文件非常直观,让用户能够快速理解并应用到自己的项目中。特别是推理结果的展示,也让用户对模型的能力有了直观的认识。

魔乐社区体验:探索Llama 3.1模型微调之旅_开发者_02

魔乐社区体验:探索Llama 3.1模型微调之旅_配置文件_03

微调过程的详细指导

微调部分的指导同样详细,根据指引,可以直接引入社区内的 [DPO-En-Zh-20k数据集](感谢社区开发者在魔乐社区贡献的DPO-En-Zh-20k数据集),使用Git将数据集下载至本地。根据指引的命令进行了微调,微调完成后,Llama 3.1 PyTorch模型的中文能力有一定提升,以下为部分微调结果:

魔乐社区体验:探索Llama 3.1模型微调之旅_开发者_04

魔乐社区体验:探索Llama 3.1模型微调之旅_配置文件_05

从数据集的下载到微调配置文件的编写,再到微调命令的执行,每一步都有详细的说明和示例,让我对模型微调有了更深入的理解,也提升了对模型微调的成功率。

结语

总的来说,魔乐社区的体验是积极的。它不仅提供了高质量的技术资源,还有着良好的社区氛围和支持。通过这次Llama 3.1模型的微调实践,我不仅学习到了很多知识,也对AI领域有了更深的认识。期待未来在魔乐社区(https://modelers.cn)中探索更多的技术和项目。

相关链接:Llama 3.1 PyTorch模型微调最佳实践 

标签:社区,模型,微调,魔乐,Llama,3.1
From: https://blog.51cto.com/u_15444077/11917792

相关文章

  • 魔乐社区体验:探索Llama 3.1模型微调之旅
    在2024年的AI领域,Meta发布的Llama3.1模型无疑成为了研究者和开发者的新宠。我有幸通过魔乐社区提供的资源,对这一模型进行了深入的学习和实践。在这个过程中,魔乐社区的资源和支持给我留下了深刻的印象。环境准备的便捷性魔乐社区提供的实践指导非常详尽,从安装AscendCANNToolki......
  • LLaMA-Factory
    LLaMA-Factory是一个高效的大型语言模型(LLM)微调平台,旨在简化和加速模型的微调过程。以下是一些关键特点:多样的模型支持:LLaMA-Factory支持多种预训练模型,包括LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi等等12。多种训练方法:平台集......
  • Meta Llama模型下载量突破3.5亿次
    ......
  • 谢谢微软,又又又Open了!一口气发布3款Phi-3.5新模型,领先Llama3.1和谷歌同级模型
    前言家人们!微软又用爱发电了!一觉醒来,微软发布了最新的小模型三兄弟:Phi-3.5-MoE-instructPhi-3.5-mini-instructPhi-3.5-vision-instruct三兄弟的表现可以说是相当的不错,其中,Phi-3.5-MoE在基准测试中击败了Llama3.18B、Mistral-Nemo-12B,Gemini1.5Flash。在推理能力方面它也优......
  • 文心一言 VS 讯飞星火 VS chatgpt (339)-- 算法导论23.1 8题
    八、设TTT为图GGG的一棵最小生成树,设......
  • 一文教你10分钟快速玩转魔乐社区
    8月底,魔乐开发者社区上线,引起开发者的关注。据了解,在魔乐社区的平台上,每一位开发者都能找到所需的资源和工具,无论是数据集、模型库还是开发工具,魔乐社区都将提供一站式服务。那该怎么玩呢?来来来,跟随我的脚步,教你10分玩转魔乐开发者社区(modelers.cn)。魔乐社区的基础信息:概念:魔......
  • MetaLlama大模型
    llama大模型介绍我们介绍LLaMA,这是一个基础语言模型的集合,参数范围从7B到65B。我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。特别是,LLaMA-13B在大多数基准测试中都优于GPT-3(175B),l......
  • 人工智能 | MetaLlama大模型
    llama大模型介绍我们介绍LLaMA,这是一个基础语言模型的集合,参数范围从7B到65B。我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。特别是,LLaMA-13B在大多数基准测试中都优于GPT-3(175B),llama2......
  • Openshift 3.11单机版 离线安装
    Openshift3.11单机版离线安装‍前置条件虚拟机:建议系统内存>=6G,CPU>=4。镜像仓库:在虚拟机上能够访问到该镜像仓库,如果没有,推荐使用harbor自建。docker:虚拟机上需要安装docker,这里使用的是18.09版本。离线安装可参考docker离线安装或自行下载rpm包安装。‍安装步骤......
  • #Datawhale X 李宏毅苹果书 AI夏令营#3.1&3.2局部极小值与鞍点&批量和动量
    本章介绍深度学习常见的概念,主要包括3.1局部极小值与鞍点;3.2批量和动量。知识点讲解:3.1局部极小值和鞍点我们在做优化的时候,有时候会发现随着参数不断更新,函数的损失值却不再下降的现象,但这个优化结果离我们想要的理想值还差距很大。这是什么原因呢?接下来我们就研究这个问......