首页 > 其他分享 >一场 Kafka CRC 异常引发的血案

一场 Kafka CRC 异常引发的血案

时间:2024-09-02 18:16:17浏览次数:10  
标签:10.0 00 01 血案 Kafka CRC ff

一、问题概述

客户的生产环境突然在近期间歇式的收到了Kafka CRC的相关异常,异常内容如下

Record batch for partition skywalking-traces-0 at offset 292107075 is invalid, cause: Record is corrupt (stored crc = 1016021496, compute crc = 1981017560)

报错没有规律性,有可能半天都不出现一次,也有可能一小时出现2、3次

而这个报错会导致Kafka的Consumer hang死,即无法继续消费后续的消息,只能手动重启Consumer才能继续,是非常严厉的报错,导致生产不可用

简单解释一下这个异常的原因,Kafka会在每个Batch的header中存储持久化下来的消息体的CRC,所谓CRC可以简单理解为TCP的checkSum,而后Consumer在收到这条消息后,将Batch header中存储的CRC取出来,然后再根据统一的CRC算法计算收到的消息体的CRC值,而后拿上这两个值做一下比对,如果一样,说明消息没有被篡改,如果不一样,就会扔出CRC异常

由于是公司的重保客户,又出现如此严重的惊天bug,一时间公司的高层领导均高度重视此事,每天晚上的夕会(均是领导)也都要单独询问解决进度,一时间,压力山大

二、分析定位

2.1、问题分析

在公司另外一个项目中(简称A客户,我们当前要处理的简称B客户),这个报错并不陌生,且报错的内容一模一样,那这两者会不会是同一个bug呢?答案是否定的

  • A客户:确实会报CRC异常,但稳定复现,只要出现了,不论Consumer重启多少次,也不论多少个Consumer来消费,均是会报CRC异常(最终定位是A客户的磁盘出现的坏点,导致数据异常,更换磁盘后,问题消失)
  • B客户:问题只会出现一次,如果手动重启Consumer,该问题便会消失,如果换个Consumer来消费,问题也会消失,好像它只是昙花一现,且再也无法复现,如同鬼魅

那这个问题不是常规问题,就比较棘手了

2.2、Kafka自身bug ?

笔者长期活跃在Kafka社区,是Kafka社区的Contributer,且在阿里的公有云工作多年,但这个报错在之前却是一次没有遇到过

在我印象中,CRC错误已经好久没见到了,而后我排查了社区所有CRC有关的issue list,发现只有在0.10之前的低版本中出现过类似异常,而我们的B客户生产环境使用的是2.8.2,这是整个2版本中的最后一个版本,而Kafka 2.0以后的版本却很少出现这个异常

而Kafka自身计算CRC的逻辑却非常简洁,只有几十行java代码,综上,笔者认为Kafka自身出bug的概率相对较小,不能把重要精力放在这块

2.3、报错倾向分析

接下来我们便对这个异常的报错倾向开始分析,经过各种排查,它具备以下特质:

  • 间歇性、概率性、不确定性;有时候可能半天都不出现一次,也有可能一小时出现2、3次
  • 无法复现;出现问题的消息,重新消费,CRC异常会消失
  • B客户现场有8套环境,现只有一套环境存在此问题,对比其他7套环境,粗略看在磁盘型号、CPU型号等硬件设备是保持一致的
  • 查看出问题的Broker,其不具备统一性,也没有落在同一台宿主机上
  • 怀疑是内存条错误,排查对应的日志没有发现异常信息
  • 与操作系统的同学确认,咱们现在虽然使用的是我们自研的OS,但TCP协议这块却没有改动过,使用的是Linux原生的
  • 在家里的环境模拟网络丢包、错包的场景,没有复现CRC异常

 

至此,好像均一切正常,粗略排查后,没有发现有价值的线索。因此我们便将重心转移至“网络”+“磁盘”这两块看似不太可能出现问题的基础能力上

三、网络排查

3.1、埋点

进行网络排查的话,我们就要执行TCP抓包,即执行tcpdump命令,但抓包也不是简单在机器上执行一个命令那么简单,当前的部署环境是3台Broker、3台Consumer,异常会暴露在Consumer中,但单台Consumer可能会与多台Broker建连

因此抓包的思路是在3台Broker上均创建监听,且在某一台consumer也创建监听,而后观察TCP发送出去的数据与接收到的数据是否一致

首先在3台Broker上执行dump命令,由于出现问题的概率不高,可能导致网络dump包非常大,因此在命令中将TCP包拆成500M大小的文件,且只保留最近的5个文件,3台Broker的IP如下:

  • 10.0.0.70
  • 10.0.0.71
  • 10.0.0.72

而3台Consumer的IP为:

  • 10.0.0.18
  • 10.0.0.19
  • 10.0.0.20

 

首先在1台consumer上执行如下命令:

sudo nuhup tcpdump -i vethfe2axxxx -nve host 10.0.0.70 or host 10.0.0.71 or host 10.0.0.72 -w broker_18.pcap -C 500 -W 5 -Z ccadmin &
sudo nuhup tcpdump -i vethfe2axxxx -nve host 10.0.0.70 or host 10.0.0.71 or host 10.0.0.72 -w broker_19.pcap -C 500 -W 5 -Z ccadmin &
sudo nuhup tcpdump -i vethfe2axxxx -nve host 10.0.0.70 or host 10.0.0.71 or host 10.0.0.72 -w broker_20.pcap -C 500 -W 5 -Z ccadmin &

其次在3台Broker上分别执行如下:

sudo nuhup tcpdump -i xxxxxxxxx1 -nve host 10.0.0.18 -w broker_18.pcap -C 500 -W 5 -Z ccadmin &
sudo nuhup tcpdump -i xxxxxxxxx2 -nve host 10.0.0.19 -w broker_19.pcap -C 500 -W 5 -Z ccadmin &
sudo nuhup tcpdump -i xxxxxxxxx3 -nve host 10.0.0.20 -w broker_20.pcap -C 500 -W 5 -Z ccadmin &

简单解释一下命令含义:

  • -i vethfe2axxxx 后面添加的是网卡名称
  • -nve host 需要添加的是需要监听的IP
  • -w broker_18.pcap 会将记录生成到broker_18.pcap的文件中
  • -C 500 每隔500M生成一个文件
  • -W 5 保留最近生成的5个文件
  • -Z ccadmin 指定用户名

3.2、异常浮现

而后我们在屏幕前等待了漫长的近2个小时后,终于捕获到了一条异常信息,因此马不停蹄地将数据下载下来,进行对照分析。首先看到的便是Wireshark帮助解析生成的前后报文

报文总长度为2712个字节,约3K的数据,但我们惊讶地发现,其中有15个字节的数据出现了偏差

至此,定位可能就是网络传输出现了问题,不过我们还需要做更多的校验工作。Wireshark工具虽然好用,但却不是万能的,它只能解析Kafka的传输协议,无法对内容进行校验与还原

 

(我们在样本中随机取了3个正常交互的消息进行对比,发现在网络发送前与发送后的数据完全一致)

3.3、Kafka协议解析

Kafka的协议分为传输协议及存储协议,笔者对它们相对比较熟悉,因此开始直接对前后传输的报文进行了解析,首先是Request

import org.apache.kafka.common.requests.FetchRequest;
import org.apache.kafka.common.requests.RequestHeader;

import javax.xml.bind.DatatypeConverter;
import java.nio.ByteBuffer;

public class MyTest {
    public static void main(String[] args) {

        // 08-30 15:06:40.820028
        String hexString =
            "0e 1f 48 2d 7e 32 06 82 25 e9 a3 d9 08 00 45 00 " +
                "00 ab 3f b3 40 00 40 06 35 ed 62 02 00 55 62 02 " +
                "00 54 eb 2e 23 85 68 57 32 37 b5 08 3f b2 80 18 " +
                "7d 2c c5 4a 00 00 01 01 08 0a b7 d1 e6 5c 26 30 " +
                "b9 11 00 00 00 73 00 01 00 0c 11 85 6f bf 00 15 " +
                "62 72 6f 6b 65 72 2d 31 30 30 32 2d 66 65 74 63 " +
                "68 65 72 2d 30 00 00 00 03 ea 00 00 01 f4 00 00 " +
                "00 01 00 a0 00 00 00 72 52 11 e0 11 85 6f bf 02 " +
                "13 5f 5f 63 6f 6e 73 75 6d 65 72 5f 6f 66 66 73 " +
                "65 74 73 02 00 00 00 15 00 00 00 03 00 00 00 00 " +
                "13 36 67 3a 00 00 00 03 00 00 00 00 00 00 00 00 " +
                "00 10 00 00 00 00 01 01 00";
        // FetchRequestData(clusterId=null, replicaId=1002, maxWaitMs=500, minBytes=1, maxBytes=10485760,
        // isolationLevel=0, sessionId=1917981152, sessionEpoch=293957567,
        // topics=[FetchTopic(topic='__consumer_offsets', partitions=[FetchPartition(partition=21, currentLeaderEpoch=3,
        // fetchOffset=322332474, lastFetchedEpoch=3, logStartOffset=0, partitionMaxBytes=1048576)])], forgottenTopicsData=[], rackId='')



        StringBuilder sb = new StringBuilder();
        char[] charArray = hexString.toCharArray();
        for (char c : charArray) {
            if (c != ' ') {
                sb.append(c);
            }
        }
        hexString = sb.toString();
        byte[] byteArray = DatatypeConverter.parseHexBinary(hexString);
        ByteBuffer byteBuffer = ByteBuffer.wrap(byteArray);
        System.out.println("len is : " + byteBuffer.array().length);
        byteBuffer.get(new byte[66]);
        byteBuffer.getInt();

        RequestHeader header = RequestHeader.parse(byteBuffer);
        System.out.println(header);
        FetchRequest fetchRequest = FetchRequest.parse(byteBuffer, (short) 12);
        System.out.println(fetchRequest);
    }
}

最终输出如下

len is : 185
RequestHeader(apiKey=FETCH, apiVersion=12, clientId=broker-1002-fetcher-0, correlationId=293957567)
FetchRequestData(clusterId=null, replicaId=1002, maxWaitMs=500, minBytes=1, maxBytes=10485760, isolationLevel=0, sessionId=1917981152, sessionEpoch=293957567, topics=[FetchTopic(topic='__consumer_offsets', partitions=[FetchPartition(partition=21, currentLeaderEpoch=3, fetchOffset=322332474, lastFetchedEpoch=3, logStartOffset=0, partitionMaxBytes=1048576)])], forgottenTopicsData=[], rackId='')

且TCP传输前后的内容一致,因此问题没有出现在Request上

 

接下来就需要进行Response的二进制协议解析,代码如下

import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.record.MemoryRecords;
import org.apache.kafka.common.requests.FetchResponse;
import org.apache.kafka.common.requests.ResponseHeader;

import javax.xml.bind.DatatypeConverter;
import java.nio.ByteBuffer;
import java.util.LinkedHashMap;
import java.util.Map;

public class MyTest2 {
    public static void main(String[] args) {

        08-30 15:06:41.853611
               String hexString =
                   "0e 1f 48 2d 7e 32 06 82 25 e9 a3 d9 08 00 45 00 " +
                       "00 ab 3f b3 40 00 40 06 35 ed 62 02 00 55 62 02 " +
                       "00 54 eb 2e 23 85 68 57 32 37 b5 08 3f b2 80 18 " +
                       "7d 2c c5 4a 00 00 01 01 08 0a b7 d1 e6 5c 26 30 " +
                       "b9 11 00 00 00 f9 11 85 6f c1 00 00 00 00 00 00 " +
                       "00 72 52 11 e0 02 13 5f 5f 63 6f 6e 73 75 6d 65 " +
                       "72 5f 6f 66 66 73 65 74 73 03 00 00 00 03 00 00 " +
                       "00 00 00 00 15 09 0c 9c 00 00 00 00 15 09 0c 9c " +
                       "00 00 00 00 00 00 00 00 00 ff ff ff ff 89 01 " +
        
                       "      00 00 00 00 15 09 0c 9c 00 00 00 7c 00 00 " +
                       "00 03 02 08 16 d8 10 00 00 00 00 00 00 00 00 01 " +
                       "91 a2 1b 8f 3c 00 00 01 91 a2 1b 8f 3c ff ff ff " +
                       "ff ff ff ff ff ff ff 00 00 00 00 00 00 00 01 92 " +
                       "01 00 00 00 56 00 01 00 0b 43 43 4d 2d 65 6e 63 " +
                       "72 79 70 74 00 16 43 53 53 2d 49 49 53 2d 53 69 " +
                       "74 75 61 74 69 6f 6e 51 75 65 72 79 00 00 00 00 " +
                       "30 00 03 00 00 00 00 00 00 00 00 ff ff ff ff 00 " +
                       "00 00 00 01 91 a2 1b 8f 3b 00 " +
        
        
        
                       "      00 00 00 00 15 00 00 00 00 00 00 13 36 67 " +
                       "47 00 00 00 00 13 36 67 47 00 00 00 00 00 00 00 " +
                       "00 00 ff ff ff ff 01 00 00 00 ";


//        String hexString =
//                "0e 1f 48 2d 7e 32 06 82 25 e9 a3 d9 08 00 45 00 " +
//                "00 ab 3f b3 40 00 40 06 35 ed 62 02 00 55 62 02 " +
//                "00 54 eb 2e 23 85 68 57 32 37 b5 08 3f b2 80 18 " +
//                "7d 2c c5 4a 00 00 01 01 08 0a b7 d1 e6 5c 26 30 " +
//                "b9 11 00 00 04 65 11 85 6f c0 00 00 00 00 00 00 " +
//                "00 72 52 11 e0 03 13 5f 5f 63 6f 6e 73 75 6d 65 " +
//                "72 5f 6f 66 66 73 65 74 73 02 00 00 00 15 00 00 " +
//                "00 00 00 00 13 36 67 3b 00 00 00 00 13 36 67 3b " +
//                "00 00 00 00 00 00 00 00 00 ff ff ff ff da 07 " +
//
//                "      00 00 00 00 13 36 67 3b 00 00 03 cd 00 00 " +
//                "00 03 02 5c 37 79 85 00 00 00 00 00 0b 00 00 01 " +
//                "91 a2 1b 8f 3c 00 00 01 91 a2 1b 8f 37 ff ff ff " +
//                "ff ff ff ff ff ff ff 00 00 00 00 00 00 00 0c 96 " +
//                "01 00 00 00 5a 00 01 00 0b 43 43 4d 2d 65 6e 63 " +
//                "72 79 70 74 00 16 43 53 53 2d 49 49 53 2d 53 69 " +
//                "74 75 61 74 69 6f 6e 51 75 65 72 79 00 00 00 00 " +
//                "30 00 03 00 00 00 00 00 00 00 00 ff ff ff ff 00 " +
//                "00 00 00 01 91 a2 1b 8f 3b 00 " +
//
//
//
//                "      00 00 00 00 15 00 00 00 00 00 00 13 36 67 " +
//                "47 00 00 00 00 13 36 67 47 00 00 00 00 00 00 00 " +
//                "00 00 ff ff ff ff 01 00 00 00 ";


        StringBuilder sb = new StringBuilder();
        char[] charArray = hexString.toCharArray();
        for (char c : charArray) {
            if (c != ' ') {
                sb.append(c);
            }
        }
        hexString = sb.toString();
        byte[] byteArray = DatatypeConverter.parseHexBinary(hexString);
        ByteBuffer byteBuffer = ByteBuffer.wrap(byteArray);
        System.out.println("len is : " + byteBuffer.array().length);
        byteBuffer.get(new byte[66]);
        byteBuffer.getInt();


        ResponseHeader responseHeader = ResponseHeader.parse(byteBuffer, (short) 0);
        System.out.println("responseHeader is " + responseHeader);
        FetchResponse<MemoryRecords> fetchResponse = FetchResponse.parse(byteBuffer, (short) 11);
        System.out.println(fetchResponse);
        LinkedHashMap<TopicPartition, FetchResponse.PartitionData<MemoryRecords>> map = fetchResponse.responseData();
        System.out.println("map size is : " + map.size());
        System.out.println("map is : " + map);
        for (Map.Entry<TopicPartition, FetchResponse.PartitionData<MemoryRecords>> entry : map.entrySet()) {
            System.out.println();
            System.out.println();
            System.out.println();
            System.out.println();
            System.out.println("TP is : " + entry.getKey());
            FetchResponse.PartitionData<MemoryRecords> value = entry.getValue();
            MemoryRecords records = value.records();
            records.batches().forEach(batch -> {
                System.out.println("isValid: " + batch.isValid());
                System.out.println("crc : " + batch.checksum());
                System.out.println("baseOffset : " + batch.baseOffset());
            });
        }
    }
}

其中关键的部分是查看2个CRC的逻辑:

  • 一块是从协议体中获取到的,即Broker计算的CRC内容,这个对比传输前后均一致
  • 一块是根据消息内容动态计算的,消息传输前,动态计算的CRC内容能与自身存储的对齐,但消息接收后,动态计算的CRC便发生了偏差

下图是真实生产业务日志中爆出的异常

其中发现计算出来的CRC是2481280076。而后将我们dump下来的二进制进行协议解码,执行上述代码后发现结果与生产环境的一致

四、磁盘排查

后续我们对发送出去的内容与磁盘的内容做了对比,内容一致,因此bug不是因磁盘导致

五、结论

由于出现问题的消息在TCP发送前后出现了diff,而正常收到的消息,在TCP发送前后均一致,因此

定位为网络出现了问题

网络的同学也认为这个现象不符合预期,已经开始介入了排查

 

总结:其实根据这些年处理Kafka异常的经验,这个bug第一时间拿到的时候,就感觉不像是Kafka自己的问题,关键是异常报错在Kafka的Broker端,我们需要不断提升自证清白的能力

标签:10.0,00,01,血案,Kafka,CRC,ff
From: https://www.cnblogs.com/xijiu/p/18393218

相关文章

  • [Kafka]binlog kafka并行消费提升小窍门
      线上库存Process实例配置详情:  背景:1.业务是通过监听上游mysqlbinlog完成的2.binlog是通过DDHkafka下发的3.consumer消费已经做到了7ms的单条消息消费性能优化4.怎样还能再提醒消费方的消费速率呢?5.当先consumer实例蓝绿组共12个实例2C2G(CPU2......
  • 为什么要学习 CCRC-PIPP
    背景:在数字化时代背景下,数据已成为重要的生产要素和国家战略资源,个人信息的保护尤为关键。保障公民的个人信息权益,促进其依法合理有效利用,是政府和企业推动数字经济健康发展的首要任务。中国网络安全审查技术与认证中心(CCRC),作为国家市场监督管理总局直属的事业单位,成立于200......
  • Kafka事务实现原理
    1Kafka的事务V.SRocketMQRocketMQ事务主要解决问题:确保执行本地事务和发消息这俩操作都成功/失败。RocketMQ还有事务反查机制兜底,更提高事务执行的成功率和数据一致性。而Kafka事务,是为确保在一个事务中发送的多条消息,要么都成功,要么都失败。这里的多条消息不一定在同一个top......
  • Java消息队列:RabbitMQ与Kafka的集成与应用
    Java消息队列:RabbitMQ与Kafka的集成与应用大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在现代的分布式系统中,消息队列是实现系统间通信、解耦和提高可扩展性的重要组件。RabbitMQ和Kafka是两个广泛使用的消息队列系统,它们各有特点和优势。本文将介......
  • Kafka事务实现原理
    1Kafka的事务V.SRocketMQRocketMQ事务主要解决问题:确保执行本地事务和发消息这俩操作都成功/失败。RocketMQ还有事务反查机制兜底,更提高事务执行的成功率和数据一致性。而Kafka事务,是为确保在一个事务中发送的多条消息,要么都成功,要么都失败。这里的多条消息不一定在同一个to......
  • 美团面试:10Wtps,Kafka为啥那快?kafka 零复制 Zero-copy 如何实现?
    文章很长,且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录博客园版为您奉上珍贵的学习资源:免费赠送:《尼恩Java面试宝典》持续更新+史上最全+面试必备2000页+面试必备+大厂必备+涨薪必备免费赠送:《尼恩技术圣经+高并发系列PDF》,帮你实现技术自由,完成职业升级,薪......
  • 场景题:如何提升Kafka效率?
    Kafka以其高吞吐量、低延迟和可扩展性而备受青睐。无论是在实时数据分析、日志收集还是事件驱动架构中,Kafka都扮演着关键角色。但是,如果Kafka使用不当,也可能会面临性能瓶颈,影响系统的整体效率。所以,了解如何提升Kafka的运行效率?对于生产环境的使用和面试都是至关重要的。......
  • 企业对个人信息数据的保护 | CCRC-PIPP​ 个人信息保护专业人员
    在当前数据驱动的时代,个人信息保护不仅是组织合规工作的重要组成部分,也是确保信息资源合规利用的关键。为此,组织须采取必要措施来保障用户个人信息的安全,同时遵守适用的法律规定。为支撑这一目标,中国网络安全审查认证和市场监管大数据中心推出了个人信息保护专业人员(CCRC-PIP......
  • 个人信息保护专业人员(CCRC-PIPP)助力企业数据要素合规有序流通
    在当今数字化时代,个人信息作为企业不可或缺的数据资产,其合规管理与高效流通变得尤为重要。组织须采纳必要措施保护用户信息,同时确保遵循相关法规要求。为此,中国网络安全审查认证和市场监管大数据中心推出了个人信息保护专业人员(CCRC-PIPP)能力认证项目,旨在培养更多专业精英,支......
  • kafka指定key进行分区遇到的问题
    问题描述:kafka在指定key进行分区的时候,若某一个分区异常,则发往这个分区的数据均会失败;没有指定key进行分区的便不会出现改问题。看一下producer的源码:publicintpartition(Stringtopic,Objectkey,byte[]keyBytes,Objectvalue,byte[]valueBytes,Clustercluster){......