首页 > 其他分享 >最常用集合 - arraylist详解

最常用集合 - arraylist详解

时间:2024-08-30 22:36:27浏览次数:8  
标签:minCapacity 元素 int arraylist elementData 详解 数组 集合 ArrayList

ArrayList介绍

ArrayList实现了List接口,是顺序容器,即元素存放的数据与放进去的顺序相同,允许放入null元素,底层通过数组实现。除该类未实现同步外,其余跟Vector大致相同。每个ArrayList都有一个容量(capacity),表示底层数组的实际大小,容器内存储元素的个数不能多于当前容量。当向容器中添加元素时,如果容量不足,容器会自动增大底层数组的大小。

ArrayList 在JDK1.8 前后的实现区别:

  • JDK1.7:像饿汉式,直接创建一个初始容量为10的数组
  • JDK1.8:像懒汉式,一开始创建一个长度为0的数组,当添加add第一个元素时再创建一个初始容量为10的数组

size(), isEmpty(), get(), set()方法均能在常数时间内完成,add()方法的时间开销跟插入位置有关,addAll()方法的时间开销跟添加元素的个数成正比。其余方法大都是线性时间。

为追求效率,ArrayList没有实现同步(synchronized),如果需要多个线程并发访问,用户可以手动同步,也可使用Vector替代

底层原理介绍

底层数据结构

//集合默认容量10;
private static final int DEFAULT_CAPACITY = 10;

//空数组
private static final Object[] EMPTY_ELEMENTDATA = {};

//默认容量的空的数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

// 集合中真实存储数据的数组
transient Object[] elementData; // non-private to simplify nested class access

 //集合中元素的个数,注意,这里不是数组的长度
private int size;

构造方法

public ArrayList() {
    //将属性中默认的空的数组赋值给了 存储数据的变量
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    
    //等价于this.elementData = {}
}

//有参构造
public ArrayList(int initialCapacity) {
    //给定初始容量,就创建一个这个容量大小的数组
   if (initialCapacity > 0) {
        this.elementData = new Object[initialCapacity];
   } else if (initialCapacity == 0) {
        //如果传递的是0 就将{}赋值给elementData 
        this.elementData = EMPTY_ELEMENTDATA;
        //等价于this.elementData = {}
   } else {
        //如果传递的是负数,就会抛异常
        //java.lang.IllegalArgumentException: Illegal Capacity: -20
        throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);
   }
}

自动扩容

每当向数组中添加元素时,都要去检查添加后元素的个数是否会超出当前数组的长度,如果超出,数组将会进行扩容,以满足添加数据的需求。

private void grow(int minCapacity) {
    // overflow-conscious code
    int oldCapacity = elementData.length;
    
    //动态扩容,扩容为原来的1.5倍,右移一位即原来的一半
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
        
    //判断新容量是否会超过最大限制
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:    
    elementData = Arrays.copyOf(elementData, newCapacity);//数组的复制操作
}

扩容方法流程:

  1. 首先获取数组长度

  2. 将数组新容量扩容为原数组容量的1.5倍取整

  3. 将新容量和当前所需最小容量做对比,(最小容量是在add方法中得到的,minCapacity=size+1,即原数组中元素数量加1),而newCapacity=elementData.length*1.5,一般来说肯定是1.5倍比+1的大。但是这里要考虑当数组为空时的情况。数组为空又分为两种情况:①指定了数组容量为0 ②没有显式指定数组大小。

    • 当数组为空时进行插入操作,因为元素个数size为0,数组容量也为0,那么就会进行扩容操作,对于空数组,扩容1.5倍后你的容量还是为0,那么此时就会小于我所需的最小容量(也就是1),此时会令 newCapacity = minCapacity;

    • 而对于①,传入到grow方法的minCapacity = 1 ,因此它扩容后的容量就是1

    • 对于②,在ensureCapacityInternal方法中,使minCapacity = DEFAULT_CAPACITY(10),因此扩容后的数组长度就是DEFAULT_CAPACITY,也就是10。

      • 原因在于在有参构造方法中使this.elementData = EMPTY_ELEMENTDATA;(无参构造方法中this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;),此时在ensureCapacityInternal方法中会对this.elementData进行判断,因此对于①,传入到grow方法的minCapacity = 1;而对于②,minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity),即minCapacity = 10
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
    //比较大小,此时 minCapacity = 10
    minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
  1. 最后判断新容量大小是否大于默认数组的最大值(Integer.MAX_VALUE-8),则赋予它整型的最大值
  2. 扩容之后,会调用Arrays.copyOf()方法对数组进行拷贝。

实际上,对数组的copy需要创建一个新数组,并对原数组进行复制的操作,这会造成资源消耗。因此在添加大量元素前,建议使用ensureCapacity操作先增加 ArrayList 实例的容量,先进行稍少量数组数据的copy,再添加元素

add(), addAll()

add 操作可能会导致capacity不足,因此在添加元素之前,都需要进行剩余空间检查,如果需要则自动扩容。扩容操作最终是通过grow()方法完成的。

假设使用的是空参构造,第一次添加元素 add(1)

public boolean add(E e) {
    //确保内部容量 0 + 1
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    //将要添加的元素添加到数组有数据的下一个位置
    elementData[size++] = e;
    return true;
}

private void ensureCapacityInternal(int minCapacity) {//第一次添加: minCapacity = 1
    //有参构造的情况:new Object[10] != {},不会执行if内的语句。即使有参构造给的是0,也不会执行,因为此时elementData = EMPTY_ELEMENTDATA,不等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA
    // 无参构造的情况下:{} = {} 会执行Math.max语句
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
    //比较大小,此时 minCapacity = 10
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    //明确数组的容量
    ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;//记录当前集合操作的次数
    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);//扩容操作
}

addAll()方法能够一次添加多个元素,根据位置不同也有两个版本,

  • 在末尾添加的addAll(Collection<? extends E> c)方法,

  • 从指定位置开始插入的addAll(int index, Collection<? extends E> c)方法

跟add()方法类似,在插入之前也需要进行空间检查,如果需要则自动扩容;如果从指定位置插入,也会存在移动元素的情况。 addAll()的时间复杂度不仅跟插入元素的多少有关,也跟插入的位置相关。

set()

由于底层是数组,因此set()方法就是直接对数组的指定位置赋值。

public E set(int index, E element) {
    rangeCheck(index);//下标越界检查
    E oldValue = elementData(index);
    elementData[index] = element;//赋值到指定位置,复制的仅仅是引用
    return oldValue;
}

get()

由于底层是数组,get()方法也是直接从数组索引处获取值,唯一要注意的是由于底层数组是Object[],得到元素后需要进行类型转换。

public E get(int index) {
    rangeCheck(index);
    return (E) elementData[index];//注意类型转换
}

remove方法

remove()方法也有两个

  • remove(int index)删除指定位置的元素,

  • remove(Object o)删除第一个满足o.equals(elementData[index])的元素。

删除操作是add()操作的逆过程,会需要将删除点之后的元素向前移动一个位置

public E remove(int index) {
    rangeCheck(index);

    modCount++;
    E oldValue = elementData(index);

    int numMoved = size - index - 1;
    if (numMoved > 0)
    //判断要删除的索引是否是最后一个,,如果不是最后一个,就需要进行数组的复制操作
        System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        //然后把最后一个元素置为空,让GC起作用
    elementData[--size] = null; // clear to let GC do its work

    return oldValue;
}

trimToSize()

将底层数组的容量调整为当前列表保存的实际元素的大小的功能

 /**
     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
     * list's current size.  An application can use this operation to minimize
     * the storage of an <tt>ArrayList</tt> instance.
     */
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = (size == 0)
              ? EMPTY_ELEMENTDATA
              : Arrays.copyOf(elementData, size);
        }
    }

indexOf(), lastIndexOf()

获取元素的第一次出现的index:

public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

获取元素的最后一次出现的index:

public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

遍历时删除(添加)常见陷阱

for循环遍历list

删除某个元素后,list的大小发生了变化,而索引也在变化,所以会导致遍历的时候漏掉某些元素。比如当删除第1个元素后,继续根据索引访问第2个元素时,因为删除的关系后面的元素都往前移动了一位,所以实际访问的是第3个元素。因此,这种方式可以用在删除特定的一个元素时使用,但不适合循环删除多个元素时使用。

for(int i=0;i<list.size();i++){
    if(list.get(i).equals("del"))
        list.remove(i);
}

解决办法:

//从list最后一个元素开始遍历

//从list最后一个元素开始遍历
for(int i=list.size()-1;i>+0;i--){
    if(list.get(i).equals("del"))
        list.remove(i);
}

增强for循环

删除元素后继续循环会抛异常java.util.ConcurrentModificationException,因为元素在使用的时候发生了并发的修改

for(String x:list){
    if(x.equals("del"))
        list.remove(x);
}

解决方法:但只能删除一个"del"元素

//解决:删除完毕马上使用break跳出,则不会触发报错
for(String x:list){
    if (x.equals("del")) {
         list.remove(x);
         break;
    }
}

iterator遍历

这种方式可以正常的循环及删除。但要注意的是,使用iterator的remove方法,如果用list的remove方法同样会报上面提到的ConcurrentModificationException错误。

Iterator<String> it = list.iterator();
while(it.hasNext()){
    String x = it.next();
    if(x.equals("del")){
        it.remove();
    }
}

FailFast机制

上面提到的ConcurrentModificationException异常,都是有这个机制的存在,通过记录modCount参数来实现。在面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。

fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A遍历集合时,即出现expectedModCount != modCount 时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。

if (modCount != expectedModCount)
    throw new ConcurrentModificationException();

fail-fast 机制并不保证在不同步的修改下抛出异常,他只是尽最大努力去抛出,所以这种机制一般仅用于检测 bug

解决 fail-fast的解决方案:

  1. 在遍历过程中所有涉及到改变modCount值得地方全部加上synchronized或者直接使用Collections.synchronizedList,这样就可以解决(实际上Vector结构就是这样实现的)。但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。
List<Integer> arrsyn = Collections.synchronizedList(arr);
  1. 使用CopyOnWriteArrayList来替换ArrayList。推荐使用该方案。CopyOnWriteArrayList是兼顾了并发的线程安全

ArrayList和Vector和CopyOnWriteArrayList和LinkedList

继承关系结构图:

ArrayList和Vector和CopyOnWriteArrayList的区别:

  • ArrayList非线程安全的,如果需要考虑到线程安全问题,那么可以使用Vector和CopyOnWriteArrayList;

  • Vector和CopyOnWriteArrayList的区别是:Vector增删改查方法都加了synchronized,保证同步,但是每个方法执行的时候都要去获得锁,性能就会大大下降,而CopyOnWriteArrayList 只是在增删改上加锁,但是读不加锁,在读方面的性能就好于Vector,CopyOnWriteArrayList支持读多写少的并发情况。

ArrayList和LinkedList的区别:

  • ArrayList基于动态数组实现;

  • LinkedList基于链表实现。对于随机index访问的get和set方法,ArrayList的速度要优于LinkedList。因为ArrayList直接通过数组下标直接找到元素;LinkedList要移动指针遍历每个元素直到找到为止。

  • 对于 add(int index, E element),remove(int index)的操作:LinkedList 和 ArrayList的时间复杂度一样,都是O(n);虽然时间复杂度一样,但实际执行时间是不一样的,如下代码所示:

    List<Integer> a = Lists.newArrayList();
    List<Integer> b = Lists.newLinkedList();
    
    Random r = new Random();
    a.add(0);
    b.add(0);
    
    long startTime = System.currentTimeMillis();
    for (int i = 0; i <= 20000; i++) {
        int p = r.nextInt(a.size());
        a.add(p, 0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 6
    
    startTime = System.currentTimeMillis();
    for (int i = 0; i <= 20000; i++) {
        int p = r.nextInt(b.size());
        b.add(p, 0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 205
    

    虽然ArrayList在索引位置新增或删除数据时需要移动数据(往前移、往后移),但是在连续内存中的块的数据,是可以操作整片内存的。而LinkedList需要一个一个的先查找到具体索引位置的元素,所以在寻址方面数组的效率高于链表。

  • 对于add新增元素:理论上来说LinkedList的速度(O(1))要优于ArrayList(O(n)),因为ArrayList在新增和删除元素时,可能会扩容和复制数组;LinkedList只需要修改指针即可。但在实际测试中,在数据量小的情况下,两者执行时间几乎一致;增大数据量后,就能看出区别了,如下代码所示:

    List<Integer> a = Lists.newArrayList();
    List<Integer> b = Lists.newLinkedList();
    
    a.add(0);
    b.add(0);
    
    long startTime = System.currentTimeMillis();
    for (int i = 0; i <= 2000000; i++) {
        int p = r.nextInt(a.size());
        a.add(0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 34
    
    startTime = System.currentTimeMillis();
    for (int i = 0; i <= 2000000; i++) {
        int p = r.nextInt(b.size());
        b.add(0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 271
    

    这是因为LinkedList 存在一定的性能问题

关于作者

来自一线程序员Seven的探索与实践,持续学习迭代中~

本文已收录于我的个人博客:https://www.seven97.top

公众号:seven97,欢迎关注~

标签:minCapacity,元素,int,arraylist,elementData,详解,数组,集合,ArrayList
From: https://www.cnblogs.com/seven97-top/p/18389611

相关文章

  • [昌哥IT课堂]使用MySQL Shell 部署沙盒数据库实例详解
     概述:这部分解释了如何使用AdminAPI设置沙盒部署。部署和使用本地MySQL的沙盒实例是开始探索AdminAPI的好方法。在将功能部署到生产服务器之前,您可以在本地测试功能。AdminAPI具有内置功能,用于创建正确配置的沙箱实例,以便在本地部署的情况下与InnoDBCluster、InnoDBClusterS......
  • Windows10使用MSYS2和VS2019编译FFmpeg详解
    1环境准备1.1 安装VisualStudio2019这个步骤相对比较简单,不再详细说明。1.2安装msys2首先需要安装msys2环境以及相关的编译依赖项,官方网址为:https://www.msys2.org/在官网下载好安装程序后,直接按照提示安装即可。安装好后需要将下载库的地址更换为国内源,否则下载......
  • HTTP协议请求/响应格式详解
    HTTP协议请求格式HTTP请求是浏览器或其他客户端和服务器之间通信的基础。一个HTTP请求由四个部分组成:请求行(requestline)请求头(headers)空行(blankline)请求体(body)1.请求行(RequestLine)请求行由方法(Method)、请求URI(UniformResourceIdentifier)、协议版本组......
  • 【AI绘画】Midjourney前置指令/describe、/shorten详解
    文章目录......
  • 【Qt笔记】QListView控件详解
     目录引言一、QListView基本概念1.1定义与功能1.2架构原理二、QListView基本使用2.1创建QListView和Model2.2设置QListView的属性2.3处理用户交互三、QListView高级技巧3.1自定义委托3.2使用QStandardItemModel3.3实现拖放功能四、QListView......
  • Google Trends使用教程详解
    GoogleTrends是谷歌旗下一款基于搜索数据推出的一款分析工具。它通过分析谷歌搜索引擎每天数十亿的搜索数据,告诉用户某一关键词或者话题各个时期下在谷歌搜索引擎中展示的频率及其相关统计数据。01进入谷歌趋势打开网址:https://trends.google.com/,输入关键词,点击Enter即......
  • 二. Spring Boot 中的 “依赖管理和自动配置” 详解透彻到底(附+详细代码流程)sh
    二.SpringBoot中的“依赖管理和自动配置”详解透彻到底(附+详细代码流程)@目录*二.SpringBoot中的“依赖管理和自动配置”详解透彻到底(附+详细代码流程)1.如何理解“约定优于配置”2.SpringBoot依赖管理和自动配置2.1SpringBoot的依赖管理2.1.1什么......
  • Pydantic 详解:FastAPI 中的数据验证神器
    FastAPI是一个现代的、快速的Web框架,用于构建API。它基于ASGI(AsynchronousServerGatewayInterface),这使得FastAPI能够支持异步请求处理,从而提供高性能的Web服务。FastAPI利用Python类型提示来增强开发体验,通过类型提示进行自动的数据验证和自动文档生成。Py......
  • 视频美颜SDK的核心技术:打造智能化主播美颜工具详解
    视频美颜SDK不仅提升了视频质量,还为主播们提供了智能化、个性化的美颜功能。那么,视频美颜SDK的核心技术究竟是什么?又是如何为主播打造智能化美颜工具的呢? 1.人脸检测与特征点识别视频美颜SDK技术通过深度学习算法,能够在视频流中快速、准确地检测到人脸,并识别多个特征点。这些特征......
  • 全网最详细爬虫教学-刚学Python也行-方法详解-看我这篇就够了-第一节
        前言        很多人一听到爬虫脑子里就想到黑客,顶级程序员等。但其实爬虫不难,今天,我就来教大家快速入门爬虫。    requests库        说到爬虫,就不得不提request库了,它能提取静态网页源码(静态网页!!!),例如百度就是个静态网站,实战演练一下。......