首页 > 其他分享 >Data Visualisation for Managers (INFS6023)

Data Visualisation for Managers (INFS6023)

时间:2024-08-28 18:48:16浏览次数:11  
标签:plant capacity power data Visualisation EU Managers Data Hydro

Data Visualisation for Managers (INFS6023)

Assignment Case

Hydro EU: Visualizing Renewable Energy Production Across Europe

Background

Hydro EU, headquartered in Milan, Italy, stands as Europe’s leading producer of clean and renewable energy, with a focus on hydroelectric power generation. The company manages a vast and diverse portfolio of hydroelectric power plants spread across the continent, ranging  from small run-of-river installations to large-scale pumped storage facilities.

As Hydro EU has grown over the years, so has the complexity of managing its widespread assets. The company’s power plants vary greatly in terms of capacity, type, and geographical location. Some are situated in mountainous regions with high dams and large reservoirs, while others are located on rivers with a steadd代写Data Visualisation for Managers (INFS6023)y flow. This diversity, while a strength in terms of energy production flexibility, presents significant challenges in terms of asset management, strategic planning, and operational optimization.

Recognizing the complexity of their asset management, Hydro EU sought assistance from a data visualization team to develop a system that would provide a comprehensive overview of their operations. The goal was to  create an interactive, visual representation of their entire hydroelectric portfolio, leveraging the wealth of data they had accumulated about each power plant.

What Problem is Data Visualization Helping to Solve?

The primary challenge faced by Hydro EU was the lack of a unified, easily comprehensible view of their asset status across Europe. This deficiency led to several operational issues:

1.  Inefficient Planning: Without a clear overview, scheduling maintenance and managing power distribution became unnecessarily complex and time-consuming.

2.  Communication Gaps: Stakeholders at various levels of the organization struggled to

access and understand the current status of assets, leading to potential misunderstandings and inefficiencies.

3.  Suboptimal Decision-Making: The absence of a comprehensive view made it difficult for

management to make informed, strategic decisions about asset utilization and maintenance prioritization.

4.  Potential for Human Error: Relying on disparate sources of information increased the

risk of overlooking critical maintenance needs or mismanaging power distribution.

What Data Can Be Used?

To create an effective visualization system, Hydro EU compiled and provided access to a

comprehensive dataset of their hydroelectric power plants across Europe. The dataset includes the following key information:

1. Asset Identification: Unique identifier for each power plant (id), Name of the power plant (name), Associated IDs from other databases (pypsa_id, GEO, WRI)

2.  Location Data: Country code (ISO 3166-1 alpha-2) (country_code), Latitude and longitude in decimal degrees (lat, lon)

3.  Power Generation Capacity:  Installed electrical power generation capacity in MW (installed capacity_MW), Pumping capacity in MW, where applicable (pumping_MW), Average annual generation in GWh (avg annual generation_GWh)

4.  Plant Characteristics: Type of power plant according to Dispa-SET classification (type), Dam height in meters (dam height_m), Reservoir volume in million cubic meters (volume_Mm3), Storage capacity in MWh (storage capacity_MWh)

A comprehensive data dictionary can be found in the Appendix.

This rich dataset allows for a comprehensive visualization that not only shows the current state of Hydro EU’s assets but also enables detailed analysis and planning.

Any Challenges That Had To Be Overcome?

The development and implementation of the data visualization system for Hydro EU presented several challenges:

Scalability was an issue that had to be overcome. Designing a system that could handle and display data for thousands of assets across Europe without compromising performance or user experience was a major technical challenge.

Data security was crucial. Given the sensitive nature of energy infrastructure information, implementing robust security measures to protect the data while still allowing necessary access was crucial.

Adoption of the data visualisation system among technology-resistant users was slow. Overcoming resistance to change and ensuring widespread adoption of the new system across different departments and levels of the organization required a comprehensive training and change management approach.

To address these challenges, Luca Moretti and his data visualization team worked closely with Hydro EU’s IT department, conducted multiple stakeholder workshops, and implemented an agile development process with regular feedback loops. The resulting system not only met the initial requirements but also provided a foundation for future enhancements and data-driven decision-making at Hydro EU.

Data Dictionary

 

Variable Name

Type

Description

id

Categorical

Unique identifier of the hydro-power plant

name

Categorical

Name of the power plant

installed

capacity_MW

Continuous

Electrical power generation capacity in MW

pumping_MW

Continuous

Pumping capacity in MW (only when specified)

type

Categorical

Typology of the power plant, according to the Dispa-SET classification of technologies

country_code

Categorical

Country code according to ISO 3166-1 alpha-2

lat

Continuous

Latitude of the power plant in decimal degrees

lon

Continuous

Longitude of the power plant in decimal degrees (-180, 180)

dam_height_m

Continuous

Nominal head of the dam in meters

volume_Mm3

Continuous

Useful capacity of the reservoir in million of cubic meters

storage

capacity_MWh

Continuous

Potential quantity of energy that can be stored in MWh

avg annual

generation_GWh

Continuous

Expected/average generation per year (GWh)

pypsa_id

Integer

Association with the ID column from PyPSA-Eur powerplants.csv

GEO

Categorical

Association with the GEO Assigned Identification Number from Global Energy Observatory

WRI

Categorical

Association with the WRI Global Power Plant Database

 

标签:plant,capacity,power,data,Visualisation,EU,Managers,Data,Hydro
From: https://www.cnblogs.com/vvx-99515681/p/18385340

相关文章

  • 深入解析Pandas的Series与DataFrame索引和切片操作(三)
    Pandas库是Python中用于数据处理和分析的强大工具,它的核心数据结构包括Series和DataFrame。掌握Pandas的索引与切片操作是数据分析的基础,因为它们允许我们高效地访问、筛选和操作数据。本文将详细介绍Pandas中的Series和DataFrame的索引与切片方法,帮助你更好地理解和应用这......
  • mmcv2.0中build loop、loop.run()、从Dataloader中取数据、run_iter()函数
    本篇博客中,我们以推理为例。首先进入Runer类中的test函数:然后进入Runer类中的build_test_loop函数:然后经过Registry中的build_from_cfg等函数,进入TestLoop类的__init__进行初始化。初始化的时候,会进入父类BaseLoop,在BaseLoop中,会对Dataloader进行build,关于mmcv2.0是如何构建D......
  • postgresql下Schema和DataBase
    database—>schema—>table1.同一个实例下,不同database是不能相互访问的,即独立的。2.同一个数据库,不同模式下的表是可以相互访问,即可共享的3.不同模式下,表名可以是一样。也就是表在模式下是独立。##授权某个库下的某个模式下有创建表的权限grantcreateondatabasedb_na......
  • Datawhale AI夏令营 Task 1 《深度学习详解》 - 1.1 通过案例了解机器学习的学
        一、学习目标通过具体案例深入理解机器学习的概念、工作原理以及在实际应用中的作用。二、主要内容案例介绍:详细阐述了图像识别、语音识别、自然语言处理等领域的具体案例,如人脸识别系统、智能语音助手、文本......
  • Datawhale X 李宏毅苹果书AI夏令营 Task1打卡
    3.1局部极小值与鞍点3.1.1临界点及其分类参数对于损失函数的微分为零时,就无法进一步优化了,训练即停止了。所以我们把这些梯度为零的点统称为临界点。临界点可以分为两类:极值点(局部极小值)和鞍点。鞍点就是指那些梯度为零但不是局部极小值或者局部极大值的点,因为其在损失......
  • 释放GPU潜能:PyTorch中torch.nn.DataParallel的数据并行实践
    释放GPU潜能:PyTorch中torch.nn.DataParallel的数据并行实践在深度学习模型的训练过程中,计算资源的需求往往随着模型复杂度的提升而增加。PyTorch,作为当前领先的深度学习框架之一,提供了torch.nn.DataParallel这一工具,使得开发者能够利用多个GPU进行数据并行处理,从而显著加速......
  • datawhale深度学习入门:task1学习笔记
    机器学习是一种人工智能的分支,它主要涉及通过经验和数据来训练计算机模型以自动处理任务或进行预测。这些模型可以利用算法和数学模型来分析和学习数据,然后使用这些知识来执行特定的任务,如图像识别、语音识别、自然语言处理、数据分类、趋势预测等。深度学习是人工智能(AI)中的......
  • Datawhale X 李宏毅苹果书 AI夏令营 Task1.2 笔记
    《深度学习详解》3.2节中关于批量和动量的主要内容总结: 批量的概念:在深度学习训练过程中,数据不是一次性全部用于计算梯度,而是被分成多个小批量(batch),每个批量包含一定数量的数据。每个批量的损失函数用于计算梯度并更新模型参数。批量大小对梯度下降法的影响:两种极端情况:......
  • Datawhale X 李宏毅苹果书 AI夏令营:task1通过案例了解机器学习
    隐藏任务:①:找出本篇中形如回归(regression)加粗字体的术语,并用自己的话进行解释,列成表格,与学习群的其他小伙伴讨论你的理解和搜索到的相关案例。②:整理出本篇中所有的公式,手动摘录,并尝试理解。③:找出机器学习找函数的3个步骤!并查找资料,交叉佐证这些步骤。④:归纳梯度下降的步骤。......
  • Datawhale X 李宏毅苹果书 AI夏令营(Task2)
     一、学前概览        任务内容:criticalpoint并不一定是训练神经网络遇到的最大的阻碍,还有一种叫AdaptiveLearningRate的技术。        任务目的:了解掌握LearningRate和分类损失的计算。        本节出现术语:自适应学习率(rootmeansquare、RM......