A. Closest Point
两个数时只要不相邻就有解,超过两个数无解
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
int a[100];
int main()
{
int T = read();
while(T--)
{
int n = read();
for(int i = 1; i <= n; ++i) a[i] = read();
if(n >= 3) printf("NO\n");
else if(a[1] + 1 == a[2]) printf("NO\n");
else printf("YES\n");
}
return 0;
}
B. Game with Doors
先特判两个区间不交的情况,关一扇门即可
两个区间有交时,枚举每一扇门,如果两个人有可能在门的两侧就把这扇门关上
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
int a[100];
int main()
{
int T = read();
while(T--)
{
int ans = 0;
int l = read(), r = read(), L = read(), R = read();
if(r < L || R < l)
{
printf("1\n");
continue;
}
for(int i = 1; i <= 99; ++i)
{
if((l <= i && r >= i && L <= i + 1 && R >= i + 1) || (l <= i + 1 && r >= i + 1 && L <= i && R >= i)) ++ans;
}
printf("%d\n", ans);
}
return 0;
}
C. Splitting Items
转化题意为两个人轮流选最大值,后手 \(\text{BOb}\) 只能选到偶数位次的最大值,它可以调整某些数使它变大,但调整的总数不能超过 \(K\) ,尝试把每个偶数位置的数调整到比它大的那个数
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
const int N = 2e5 + 5;
int a[N];
int main()
{
int T = read();
while(T--)
{
int n = read(), K = read();
for(int i = 1; i <= n; ++i) a[i] = read();
sort(a + 1, a + n + 1);
for(int i = n - 1; i >= 1 && K; i -= 2)
{
int tmp = a[i + 1] - a[i];
if(tmp <= K) K -= tmp, a[i] += tmp;
else a[i] += K, K = 0;
}
ll ans = 0, op = 1;
for(int i = n; i >= 1; --i) ans += 1ll * op * a[i], op = -op;
printf("%lld\n", ans);
}
return 0;
}
D. Colored Portals
首先用并查集判断无解,每一个数连接两个集合,如果询问的两个数不在同一个集合则无解
设询问的两个数为 \(i, j\) 其中 \(i < j\)
若两个数的集合有交,例如\((1, 2), (1, 3)\) ,答案为 \(j - i\)
若两个数的集合不交,需要第三方,例如 \((1, 2), (3, 4)\) 可以找第三方 \((1, 3), (1, 4), (2, 3), (2, 4)\) 只需要找一个第三方即可,且优先选择位于 \([i, j]\) 之间的第三方,若没有,则选择第一个小于 \(i\) 或第一个大于 \(j\) 的第三方
用 \(\text{vector}\) 分别存储每种第三方的数, \(\text{lower_bound}\)查找
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
const int N = 2e5 + 5;
vector<int> a[205];
string s[N];
int id[205];
int f[5];
int find(int x){ return (x == f[x]) ? f[x] : (f[x] = find(f[x])); }
void merge(int x, int y)
{
x = find(x), y = find(y);
if(x == y) return ;
f[y] = x;
}
int get(int x, int y)
{
if(x > y) swap(x, y);
return x * 10 + y;
}
int main()
{
int T = read();
id['B'] = 1, id['G'] = 2, id['R'] = 3, id['Y'] = 4;
while(T--)
{
int n = read(), q = read();
for(int i = 1; i <= 4; ++i) f[i] = i;
for(int i = 1; i <= 199; ++i) a[i].clear();
for(int i = 1; i <= n; ++i)
{
cin >> s[i];
int x = id[s[i][0]], y = id[s[i][1]];
merge(x, y);
a[x * 10 + y].emplace_back(i);
}
while(q--)
{
int i = read(), j = read();
if(i > j) swap(i, j);
int xi = id[s[i][0]], yi = id[s[i][1]];
int xj = id[s[j][0]], yj = id[s[j][1]];
if(xi == xj || xi == yj || yi == xj || yi == yj) printf("%d\n", abs(i - j));
else
{
if(find(xi) != find(xj)) printf("-1\n");
else
{
int id = 0, ans = 0x3f3f3f3f, pos1 = 0;
id = get(xi, xj);
pos1 = lower_bound(a[id].begin(), a[id].end(), i) - a[id].begin();
if(pos1 < a[id].size()) ans = min(ans, abs(i - a[id][pos1]) + abs(j - a[id][pos1]));
if(pos1 >= 1) ans = min(ans, abs(i - a[id][pos1 - 1]) + abs(j - a[id][pos1 - 1]));
id = get(xi, yj);
pos1 = lower_bound(a[id].begin(), a[id].end(), i) - a[id].begin();
if(pos1 < a[id].size()) ans = min(ans, abs(i - a[id][pos1]) + abs(j - a[id][pos1]));
if(pos1 >= 1) ans = min(ans, abs(i - a[id][pos1 - 1]) + abs(j - a[id][pos1 - 1]));
id = get(yi, xj);
pos1 = lower_bound(a[id].begin(), a[id].end(), i) - a[id].begin();
if(pos1 < a[id].size()) ans = min(ans, abs(i - a[id][pos1]) + abs(j - a[id][pos1]));
if(pos1 >= 1) ans = min(ans, abs(i - a[id][pos1 - 1]) + abs(j - a[id][pos1 - 1]));
id = get(yi, yj);
pos1 = lower_bound(a[id].begin(), a[id].end(), i) - a[id].begin();
if(pos1 < a[id].size()) ans = min(ans, abs(i - a[id][pos1]) + abs(j - a[id][pos1]));
if(pos1 >= 1) ans = min(ans, abs(i - a[id][pos1 - 1]) + abs(j - a[id][pos1 - 1]));
printf("%d\n", ans);
}
}
}
}
return 0;
}
E. Not a Nim Problem
吃了没文化的亏,没理解题意
博弈论,发现每一堆石子是一个有向图游戏,只需求出每堆石子的 \(\text{SG}\) 函数再求异或和即可
考虑 \(SG(x)\) 怎么求?
\[SG(x) = mex_{gcd(x, y) = 1}\{ SG(x - y) \} \]由于 \(gcd(x, y) = gcd(x, x - y)\)
\[SG(x) = mex_{gcd(x, y) = 1}\{ SG(y) \} \]手动模拟发现 \(SG(1) = 1, SG(2) = 0, SG(3) = 2 \cdots\)
所有偶数的 \(SG\) 值都为0,所有奇数的 \(SG\) 值都是它的最小质因子的位次(3是第二个质因子)
恰好线性筛是每个数恰好被最小质因子筛一次
证明:质数 \(p\) 的 \(SG\) 由定义可知是它的位次,合数数学归纳法证
总结
- 博弈论先猜后证
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
const int N = 1e7 + 5;
int f[N];
int prime[N], cnt;
bool vis[N];
void init()
{
prime[++cnt] = 2, vis[2] = vis[4] = 1;
f[1] = 1;
for(int i = 3; i <= 10000000; ++i)
{
if(!vis[i]) prime[++cnt] = i, f[i] = cnt;
for(int j = 1; j <= cnt && prime[j] * i <= 10000000; ++j)
{
vis[prime[j] * i] = 1;
f[prime[j] * i] = f[prime[j]];
if(i % prime[j] == 0) break;
}
}
}
int main()
{
int T = read();
init();
while(T--)
{
int n = read(), ans = 0;
for(int i = 1; i <= n; ++i)
{
int x = read();
ans ^= f[x];
}
if(ans == 0) printf("Bob\n");
else printf("Alice\n");
}
return 0;
}
F. Make a Palindrome
发现对于某一步分裂能解决的问题,在它的回文位置做合并也能解决
因此直接舍弃分裂操作,只使用合并
设 \(dp[l][r]\) 表示区间 \([l, r]\) 合并成回文序列的最小操作数
转移时找到最小的 \(i\) 满足 \(i > l\) 且存在 \(j > i, j < r\) 使 \(a[l] + \cdots + a[i - 1] = a[j + 1] + \cdots + a[r]\)
\[dp[l][r] = \min_{s[r] + s[l - 1] = s[j] + s[i - 1]} dp[i][j] + (i - l - 1) + (r - j - 1) \]将 \((s[j] + s[i - 1], dp[i][j] + i - j)\) 扔到map里即可
@Luckyblock 对前后缀和的思考感觉更优雅 博客链接
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
const int N = 2005;
int a[N], sum[N];
int dp[N][N];
map<int, int> mp;
void solve()
{
mp.clear();
int n = read(), ans = 0;
for(int i = 1; i <= n; ++i) a[i] = read(), sum[i] = sum[i - 1] + a[i];
for(int i = 0; i < n; ++i) mp[2 * sum[i]] = 1;
for(int len = 1; len <= n; ++len)
for(int l = 1, r = l + len - 1; r <= n; ++l, ++r)
{
if(a[l] == a[r]) dp[l][r] = dp[l + 1][r - 1];
else
{
if(mp.find(sum[l - 1] + sum[r]) == mp.end()) mp[sum[l - 1] + sum[r]] = 0x3f3f3f3f;
dp[l][r] = mp[sum[l - 1] + sum[r]] + r - l - 2;
}
dp[l][r] = min(dp[l][r], r - l);
if(mp.find(sum[l - 1] + sum[r]) == mp.end()) mp[sum[l - 1] + sum[r]] = 0x3f3f3f3f;
mp[sum[l - 1] + sum[r]] = min(mp[sum[l - 1] + sum[r]], dp[l][r] + l - r);
ans += dp[l][r];
}
printf("%d\n", ans);
}
int main()
{
int T = read();
while(T--) solve();
return 0;
}
G. Substring Compression
刷题真能学到东西!对矩阵加速 \(DP\) 的理解还停留在斐波那契数列
先考虑 \(K\) 个数怎么做
显然的是奇数段一定只选一个数,即 1 ~ 9
设 \(dp[i][c]\) 表示压缩完前 \(i\) 个,上一个奇数段的值为 \(c\) 的最小压缩长度
\[dp[i + 1][c] = dp[i][c] + c \]\[dp[i + 2][s_{i + 1}] = dp[i][c] + s_{i + 1} \]到这直接放弃,没法优化
\(i \to i + 2\) 的转移很烦人,如何将所有转移都改为 \(i \to i + 1\) ?
神之一手:令 \(dp[i][0]\) 表示选 \(s_i\) 做新的奇数段,有转移
\[ dp[i + 1][c] = \begin{cases} dp[i][c] + c, & c \neq s_i \\ \min\{ dp[i][c], dp[i][0] \} + c, & c = s_i \\ \end{cases}\]\[dp[i + 1][0] = \min_{1 \le c \le 9} dp[i][c] \]发现可以矩阵加速,剩下的就是维护连续 \(K\) 的矩阵相乘,然后用向量左乘矩阵
那必然是线段树维护矩阵啊,每次询问的时候返回矩阵会T,带着向量递归就可以了,单次询问是 \(O(10^2 \log n)\) ,但是建树是 \(O(10^3\ n)\)
线段树大常数哭哭
题解用两个栈维护滑动窗口,只用队列的话删除元素的时候不好操作
用两个栈维护,并且每个元素记录两个值,一是自身矩阵,二是自身矩阵与栈中在它位置下面的所有矩阵的乘积
当第一个栈元素第一次达到 \(K\) 个时需要删除元素
此时暴力将栈中元素取出并放入另一个栈(相当于把整个栈翻转了)并重新计算矩阵乘积
此时第二个栈栈顶元素即 \(1\) ,可以直接删去,而 \(2\) 经过重新计算矩阵乘积恰好保存了 2 ~ K 的矩阵乘积
总操作为:
-
删去第二个栈栈顶元素,若第二个栈为空则先让一栈翻转到二栈
-
向一栈中加入新元素
-
取两栈栈顶元素相乘得转移矩阵,用向量左乘它
单次加入一个元素是 \(O(10^3)\) ,暴力翻转栈均摊每个元素是 \(O(10^3)\)
感觉分块也能做,块长设成 \(K\) ,然后块内维护矩阵前缀积和后缀积,询问的时候只需要两个矩阵相乘,预处理也是 \(O(10^3 n)\)
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c & 15), c = getchar();
return f ? -x : x;
}
const int inf = 0x3f3f3;
const int N = 2e5 + 5;
int n, K;
char S[N];
struct Matrix
{
int c[10][10];
Matrix()
{
for(int i = 0; i < 10; ++i)
for(int j = 0; j < 10; ++j)
c[i][j] = inf;
}
Matrix friend operator * (Matrix a, Matrix b)
{
Matrix c;
for(int i = 0; i < 10; ++i)
for(int k = 0; k < 10; ++k)
for(int j = 0; j < 10; ++j)
c.c[i][j] = min(c.c[i][j], a.c[i][k] + b.c[k][j]);
return c;
}
}A[10];
void init(int x)
{
A[x].c[0][x] = x;
for(int i = 1; i <= 9; ++i)
{
A[x].c[i][0] = 0;
A[x].c[i][i] = i;
}
}
#define ls(x) (x << 1)
#define rs(x) (x << 1 | 1)
Matrix a[N << 2];
void build(int k, int l, int r)
{
if(l == r)
{
a[k] = A[S[l - 1] - '0'];
return ;
}
int mid = (l + r) >> 1;
build(ls(k), l, mid), build(rs(k), mid + 1, r);
a[k] = a[ls(k)] * a[rs(k)];
}
Matrix mul(Matrix a, Matrix b)
{
Matrix c;
for(int i = 0; i < 1; ++i)
for(int k = 0; k < 10; ++k)
for(int j = 0; j < 10; ++j)
c.c[i][j] = min(c.c[i][j], a.c[i][k] + b.c[k][j]);
return c;
}
Matrix query(int k, int l, int r, int L, int R, Matrix c)
{
if(L <= l && r <= R) return mul(c, a[k]);
int mid = (l + r) >> 1;
if(R <= mid) return query(ls(k), l, mid, L, R, c);
if(L > mid) return query(rs(k), mid + 1, r, L, R, c);
c = query(ls(k), l, mid, L, R, c);
return query(rs(k), mid + 1, r, L, R, c);
}
int main()
{
n = read(), K = read();
scanf("%s", S + 1);
for(int i = 1; i <= 9; ++i) init(i);
build(1, 2, n);
for(int i = 1; i <= n - K + 1; ++i)
{
Matrix I;
I.c[0][0] = 0;
Matrix W = query(1, 2, n, i + 1, i + K - 1, I);
int ans = inf;
for(int j = 1; j <= 9; ++j) ans = min(ans, W.c[0][j]);
printf("%d ", ans);
}
return 0;
}
题解的双栈法
#include <bits/stdc++.h>
#define forn(i, n) for (int i = 0; i < int(n); i++)
using namespace std;
const int D = 10;
const int INF = 1e9;
typedef array<array<int, D>, D> mat;
mat mul(const mat &a, const mat &b, bool fl){
mat c;
forn(i, D) forn(j, D) c[i][j] = INF;
if (fl){
forn(i, D) forn(j, D){
c[j][i] = min(c[j][i], min(a[j][0] + b[0][i], a[j][i] + b[i][i]));
c[j][0] = min(c[j][0], a[j][i] + b[i][0]);
}
}
else{
forn(i, D) forn(j, D){
c[i][j] = min(c[i][j], min(a[i][0] + b[0][j], a[i][i] + b[i][j]));
c[0][j] = min(c[0][j], a[0][i] + b[i][j]);
}
}
return c;
}
struct minqueue{
vector<pair<mat, mat>> st1, st2;
void push(const mat &a){
if (!st1.empty())
st1.push_back({a, mul(st1.back().second, a, true)});
else
st1.push_back({a, a});
}
void pop(){
if (st2.empty()){
st2 = st1;
reverse(st2.begin(), st2.end());
st1.clear();
assert(!st2.empty());
st2[0].second = st2[0].first;
forn(i, int(st2.size()) - 1)
st2[i + 1].second = mul(st2[i + 1].first, st2[i].second, false);
}
st2.pop_back();
}
int get(){
if (st1.empty()) return st2.back().second[0][0];
if (st2.empty()) return st1.back().second[0][0];
int ans = INF;
forn(i, D) ans = min(ans, st2.back().second[0][i] + st1.back().second[i][0]);
return ans;
}
};
mat tran[D];
void init(int d){
forn(i, D) forn(j, D) tran[d][i][j] = INF;
for (int i = 1; i <= 9; ++i){
tran[d][i][i] = i;
tran[d][i][0] = i;
}
tran[d][0][d] = 0;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
for (int i = 1; i <= 9; ++i) init(i);
int n, k;
cin >> n >> k;
string s;
cin >> s;
minqueue q;
forn(i, n){
q.push(tran[s[i] - '0']);
if (i - k >= 0) q.pop();
if (i - k >= -1) cout << q.get() << ' ';
}
cout << '\n';
return 0;
}