import torch
import torch.nn as nn
from d2l import torch as d2l
net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=(5, 5), padding=2),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=(2, 2), stride=2),
nn.Conv2d(6, 16, kernel_size=(5, 5)),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=(2, 2), stride=2),
nn.Flatten(),
nn.Linear(16*5*5, 120),
nn.Sigmoid(),
nn.Linear(120, 84),
nn.Sigmoid(),
nn.Linear(84, 10))
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__, '------', X.shape)
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 估计模型的准确率
def evaluate_accuracy_gpu(net, data_iter, device = None):
if isinstance(net, nn.Module):
net.eval() # 停止dropout和梯度计算
if device is None:
device = next(iter(net.parameters())).device
metric = d2l.Accumulator(2) # 0:正确预测的数量 1:总预测数量
with torch.no_grad():
for X, y in data_iter:
if isinstance(X, list):
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(d2l.accuracy(net(X), y), y.numel()) # numel获取一共多少元素
return metric[0] / metric[1]
def train(net, train_iter, test_iter, num_epochs, lr, device):
# 参数初始化
def init_weights(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
net.to(device)
# 定义损失函数和优化器
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
# 训练损失之和,训练准确率之和,样本数
metric = d2l.Accumulator(3)
net.train() # 开启训练模式
for i, (X, y) in enumerate(train_iter):
timer.start()
X = X.to(device)
y = y.to(device)
optimizer.zero_grad()
y_pred = net(X)
l = loss(y_pred, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_pred, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(device)}')
lr, num_epochs = 0.1, 10
train(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
标签:22,nn,metric,网络,iter,train,lenet,device,net
From: https://www.cnblogs.com/morehair/p/18381025