首页 > 其他分享 >模板

模板

时间:2024-08-25 20:37:31浏览次数:17  
标签:return val int void const 模板 dis

//模板集合
/*class, struct, 函数的第1个花括号不断行, if, for, while等花括号单独一行*/
/*所有private首字母大写, 所有public接口全小写*/
/*变量多个单词不隔开, 函数用下划线隔开, 构造函数形参可用下划线*/
/*指针变量p做前缀, 指针类型typedef为ptr*/
#pragma GCC optimize(3, "inline")
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;
typedef double db;
typedef long double ldb;
typedef string str;
#define rep(i, a, b) for(int i = (a); i <= (b); ++i)
#define pre(i, a, b) for(int i = (a); i >= (b); --i)
#define il inline
#define mp make_pair
#define popb pop_back
#define popf pop_front
#define pushb push_back
#define pushf push_front
#define fir first
#define sec second
#define mem(a,b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << '=' << x << ' '
//#define int ll
//#define double ldb
//ifstream is(".in",ios::in);
//ofstream os(".out",ios::out);
//#define cin is
//#define cout os
int n, m;
const int N = 10, M = 10, MOD = 1e9 + 7;
const int base = 10, num_of_digit = 1;//进制
const int INF = 1e9;//极大值
const double eps = 1e-12;
template<typename T> T max(const T a, const T b, const T c) {
	return max(max(a, b), c);
}
template<typename T> T min(const T a, const T b, const T c) {
	return min(min(a, b), c);
}
template<typename T> T gcd(const T a, const T b) {
	return b ? gcd(b, a % b) : a;
}
template<typename T> T lcm(const T a, const T b) {
	return a / gcd(a, b) * b;
}
#define lowbit(x)  ((x) & (-(x)))
#define bin(i) (1 << (i))//生成只有第i位为1,其余位为0的数(2^i)
#define set_bit(x, i) ((x) | bin(i))//将第i位设置为1
#define clr_bit(x, i) ((x) & (~ bin(i)))//将第i位设置为0
#define flip_bit(x, i) ((x) ^ bin(i))//反转x的第i位
#define get_bit(x, i) (((x) >> (i)) & 1)//取出x的第i位
#define check_adjacent_1(x) ((x) & ((x) >> 1))//检查是否有相邻的1
int count_bit(int x) {
	int sum = 0;
	while(x != 0)
	{
		x &= (x - 1);//清除最低位的1
		++sum;
	}
	return sum;
}
namespace IO {//快速IO
	#ifndef LOCAL
		constexpr static size_t MAX_BUF_SIZE = 1 << 20;
		static char inbuf[MAX_BUF_SIZE], *inbufptr = inbuf, outbuf[MAX_BUF_SIZE], *outbufptr = outbuf;
		inline char get_char() {
			if(inbufptr == inbuf + MAX_BUF_SIZE)
			{
				size_t len = fread(inbuf, 1, MAX_BUF_SIZE, stdin);
				inbufptr = inbuf;
				if (len == 0) return EOF;
			}
			return *inbufptr++;
		}
		inline void flush() {
			fwrite(outbuf, 1, outbufptr - outbuf, stdout);
			outbufptr = outbuf;
		}
		inline void put_char(const char c) {
			if(outbufptr == outbuf + MAX_BUF_SIZE)
				flush();
			*outbufptr++ = c;
		}
		class Flush {
			public: inline ~Flush() {
				flush();
			}
		} _;
		#define gc() get_char()
		#define pc(x) put_char(x)
	#else
		#define gc() getchar()
		#define pc(x) putchar(x)
	#endif
	inline char read(char &ch) {
		do
			ch = gc(); 
		while(isspace(ch));
		return ch;
	}
	inline void write(const char ch) {
		pc(ch);
	}
	inline string read(string &s) {
		char ch;
		read(ch);
		while(!isspace(ch))
			s.push_back(ch), read(ch);
		return s;
	}
	inline void write(const string s) {
		for(char ch : s)
			pc(ch);
	}
	template<typename t1> inline t1 read(t1 &x) {
		x = 0;
		t1 f = 1;
		char ch = gc();
		while(ch < '0' || '9' < ch)
		{
			if(ch == '-') f = -1;
			ch = gc();
		}
		while('0' <= ch && ch <= '9')
			x = x * 10 + ch - '0', ch = gc();
		return x = x * f;
	}
	template<typename t1> inline void write(t1 x) {
		if(x < 0) x = -x, pc('-');
		short stk[25], top = 0;
		do
			stk[++top] = x % 10, x /= 10;
		while(x > 0);

		while(top)
			pc(stk[top--] + '0');
	}
	template<typename t1, typename ...t2> inline void read(t1 &x, t2 &...y) {
		read(x), read(y...);
	}
	template<typename t1, typename ...t2> inline void write(t1 x, t2 ...y) {
		write(x), pc(' '), write(y...), pc(' ');
	}
} using namespace IO;
class STL {
	int a;
	void Vector() {
		vector<int> v(N, -1);
		v.begin(), v.end(), v.front(), v.back();//首尾迭代器, 元素
		v.push_back(a), v.pop_back();//在末尾加入, 删除
		v.size();//当前长度
		v.empty();//true为空, false不空
		v.clear();//清空
		v.insert(v.begin() + 1, 1), v.erase(v.begin());//在指定位置插入, 删除
		sort(v.begin(), v.end());
	}
	void Queue() {
		queue<int> q;
		q.front(), q.back();//首尾元素
		q.push(a), q.pop();//从末尾加入, 删除
		q.size();//当前长度
		q.empty();//true为空, false不空
	}
	void Stack() {
		stack<int> st;
		st.top();//栈顶元素
		st.push(a), st.pop();//从栈顶加入, 弹出
		st.size();//当前长度
		st.empty();//true为空, false不空
	}
	void Priority_queue() {
		priority_queue<int> p;
		priority_queue<int, vector<int>, greater<int> > q;
		p.top();//优先级最大元素
		p.push(a), p.pop();//加入元素, 删除优先级最大元素
		p.size();//当前长度
		p.empty();//true为空, false不空
	}
	void Deque() {
		deque<int> de;
		de.begin(), de.end(), de.front(), de.back();//首尾迭代器, 元素
		de.push_front(a), de.pop_front();//从队头入队, 出队
		de.push_back(a), de.pop_back();//从队尾入队, 出队
		de.clear();//清空
	}
	void Set() {
		set<int> s;
		s.empty();//true为空, false不空
		s.size();//元素个数
		s.clear();//清空
		s.begin(), s.end();//首尾迭代器
		s.insert(a), s.erase(a);//加入, 删除a
		s.find(a);//返回指向a的迭代器, 不存在返回end()
		s.lower_bound(a), s.upper_bound(a);//返回集合中第1个 >= , > 关键字的元素
	}
	void Bitset() {
		bitset<100> b;
		b.count();//1的个数
		b.any(), b.none();//如果全都为0, any返回0, none返回1
		//如果有1个1, any返回1, none返回0
		b.set(), b.reset(), b.flip();//全部置为1, 0, 全部取反
		b.set(a, 1), b.reset(a), b.flip(a);//把a位置置为1, 0, 取反
	}
	void Map() {
		map<int, int> mapp, mapp1;
		mapp.begin(), mapp.end();//首尾迭代器
		mapp.insert(pair<int, int>(1, 1));//插入
		mapp.find(a);//返回键是a的映射的迭代器
		mapp.clear();//清空
		mapp.erase(a);//删除1个元素
		mapp.erase(mapp.begin(), mapp.end());//删区间
		mapp.size();//长度
		mapp.empty();//true为空, false不空
		swap(mapp, mapp1);//交换
	}
};
template<typename T = int> class chain_forward_star {//链式前向星
  public:
	struct edge {
		int v, nxt;//终点, 下一条边的编号
		T w;//权值
	} e[M << 1];
	int head[N], idx;
	chain_forward_star() {
		clear();
	}
	void clear() {
		idx = 0;
		memset(head, -1, sizeof head);
	}
	void add_edge(const int u, const int v, const T w = 1) {//加边
		e[++idx] = {v, head[u], w};
		head[u] = idx;
	}
};
class union_find {//并查集
  private:
	int fa[N], size[N];
  public:
	union_find() {
		clear();
	}
	void clear(const int n_ = N - 1) {//清空
		for(int i = 0; i <= n_; ++i)
			fa[i] = i, size[i] = 1;
	}
	int find(const int x) {//找最大祖先
		return x == fa[x] ? x : fa[x] = find(fa[x]);
	}
	bool merge(int x, int y) {//合并, true成功, false失败
		x = find(x), y = find(y);
		if(x == y) return false;
		if(size[x] < size[y]) swap(x, y);
		fa[y] = x;
		size[x] += size[y];
		size[y] = 0;
		return true;
	}
	bool query(const int x, const int y) {//查是否在同一集合
		return find(x) == find(y);
	}
	int get_size(const int x) {//查所在集合大小
		return size[find(x)];
	}
};
class binary_index_tree {//树状数组
  private:
	int t[N];
  public:
	binary_index_tree() {
		clear();
	}
	void clear() {
		memset(t, 0, sizeof t);
	}
	void add(int x, const int v) {//将x的位置加上v
		while(x <= n)
			t[x] += v, x += lowbit(x);
	}
	int sum(int x) const {//1 ~ x的和
		int res = 0;
		while(x != 0)
			res += t[x], x -= lowbit(x);
		return res;
	}
	int query(const int l, const int r) const {//查询l ~ r区间和
		return sum(r) - sum(l - 1);
	}
};
class Int {//高精度
  public:
	int d[N];
	Int(int x = 0) {
		clear();
		do d[++d[0]] = x % base, x /= base; while(x != 0);
	}
	Int(string s) {
		clear();
		d[0] = 1;
		int lens = s.size();
		for(int r = lens - 1, l = 0; r >= 0; r = l - 1)
		{
			l = r - num_of_digit + 1;
			if(l < 0) l = 0;
			for(int i = l; i <= r; ++i)
				d[d[0]] = (d[d[0]] * 10) + (s[i] - '0');
			++d[0];
		}
		--d[0];
	}
	void clear() {
		memset(d, 0, sizeof d);
	}
	Int operator + (const Int b) const {
		Int c;
		c.d[0] = max(d[0], b.d[0]);
		for(int i = 1; i <= c.d[0]; ++i)
		{
			c.d[i] += d[i] + b.d[i];
			c.d[i + 1] += c.d[i] / base;
			c.d[i] %= base;
		}
		if(c.d[c.d[0] + 1] != 0) ++c.d[0];
		return c;
	}
	Int operator - (const Int b) const {
		Int c;
		c.d[0] = max(d[0], b.d[0]);
		int num = 0;//借位
		for(int i = 1; i <= c.d[0]; ++i)
		{
			c.d[i] = d[i] - b.d[i] - num;
			if(c.d[i] < 0)
				c.d[i] += base, num = 1;
			else num = 0;
		}
		while(c.d[0] > 1 && c.d[c.d[0]] == 0)
			--c.d[0];
		return c;
	}
	Int operator * (const Int b) const {
		Int c;
		c.d[0] = d[0] + b.d[0];
		for(int i = 1; i <= d[0]; ++i)
			for(int j = 1; j <= b.d[0]; ++j)
			{
				c.d[i + j - 1] += d[i] * b.d[j];
				c.d[i + j] += c.d[i + j - 1] / base;
				c.d[i + j - 1] %= base;
			}
		while(c.d[0] > 1 && c.d[c.d[0]] == 0)
			--c.d[0];
		return c;
	}
	Int operator / (const int k) const {
		Int c;
		c.d[0] = d[0];
		int x = 0;
		for(int i = d[0]; i >= 1; --i)
		{
			x = x * base + d[i];
			c.d[i] = x / k;
			x %= k;
		}
		while(c.d[0] > 1 && c.d[c.d[0]] == 0)
			--c.d[0];
		return c;
	}
	int operator % (const int k) const {
		int x = 0;
		for(int i = d[0]; i >= 1; --i)
			x = (x * base + d[i]) % k;
		return x;
	}
	Int operator ^ (int b) const {
		Int res = 1, a = *this;
		while(b != 0)
		{
			if((b & 1) == 1)
				res = res * a;
			a = a * a;
			b >>= 1;
		}
		return res;
	}
	friend istream& operator >> (istream &in, Int &a) {
		string s;
		in >> s;
		a = s;
		return in;
	}
	friend ostream& operator << (ostream &out, Int &a) {
		while(a.d[0] > 1 && a.d[a.d[0]] == 0)
			--a.d[0];
		out << a.d[a.d[0]];
		for(int i = a.d[0] - 1; i >= 1; --i)
			out << setfill('0') << setw(num_of_digit) << a.d[i];
		return out;
	}
};
bool operator == (const Int a, const Int b) {
	if(a.d[0] != b.d[0]) return false;
	for(int i = a.d[0]; i >= 1; --i)
		if(a.d[i] != b.d[i]) return false;
	return true;
}
bool operator != (const Int a, const Int b) {
	return !(a == b);
}
bool operator < (const Int a, const Int b) {
	if(a.d[0] != b.d[0]) return a.d[0] < b.d[0];
	for(int i = a.d[0]; i >= 1; --i)
		if(a.d[i] != b.d[i]) return a.d[i] < b.d[i];
	return false;
}
bool operator > (const Int a, const Int b) {
	return b < a;
}
bool operator <= (const Int a, const Int b) {
	return !(a > b);
}
bool operator >= (const Int a, const Int b) {
	return !(a < b);
}
Int sqrt(Int a, int b) {//a的b次方根(取整)
	Int l = 0, r = a, ans;
	while(l <= r)
	{
		Int mid = (l + r) / 2;
		if(mid.d[0] * b - b + 1 <= a.d[0] && (mid ^ b) <= a)//mid最少的位数 <= a的位数
			l = mid + 1, ans = mid;
		else r = mid - 1;
	}
	return ans;
}
Int gcd(Int a, Int b) {//高精gcd
	if(a < b) swap(a, b);
	int r = 0;//2的次数
	while(b > 0)
	{
		if(a.d[1] % 2 == 0 && b.d[1] % 2 == 0)
			a = a / 2, b = b / 2, ++r;
		else if(a.d[1] % 2 == 0 && b.d[1] % 2 != 0)
			a = a / 2;
		else if(a.d[1] % 2 != 0 && b.d[1] % 2 == 0)
			b = b / 2;
		else a = (a - b) / 2;
		if(a < b) swap(a, b);
	}
	for(int i = 1; i <= r; ++i)
		a = a * 2;
	return a;
}
class matrix {//矩阵
  public:
	ll a[N][N];
	ll n, m;//行数, 列数
	matrix(const int n_, const int m_): n(n_), m(m_) {
		clear();
	}
	void clear() {
		memset(a, 0, sizeof a);
	}
	matrix operator + (const matrix B) const {
		matrix res(n, m);
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= m; ++j)
				res.a[i][j] = a[i][j] + B.a[i][j];
		return res;
	}
	matrix operator - (const matrix B) const {
		matrix res(n, m);
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= m; ++j)
				res.a[i][j] = a[i][j] - B.a[i][j];
		return res;
	}
	matrix operator * (const int k) const {
		matrix res(n, m);
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= m; ++j)
				res.a[i][j] = a[i][j] * k;
		return res;
	}
	matrix operator * (const matrix B) const {
		matrix res(n, B.m);
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= B.m; ++j)
				for(int k = 1; k <= m; ++k)
					res.a[i][j] += a[i][k] * B.a[k][j];
		return res;
	}
	friend istream& operator >> (istream &in, matrix &A) {
		for(int i = 1; i <= A.n; ++i)
			for(int j = 1; j <= A.m; ++j)
				in >> A.a[i][j];
		return in;
	}
	friend ostream& operator << (ostream &out, matrix &A) {
		for(int i = 1; i <= A.n; ++i)
		{
			for(int j = 1; j <= A.m; ++j)
				out << A.a[i][j] << ' ';
			out << '\n';
		}
		return out;
	}
};
matrix qpow(const matrix A, ll b) {//矩阵快速幂
	matrix res = A, k = A;
	b--;
	while(b != 0)
	{
		if((b & 1) == 1)
			res = res * k;
		k = k * k;
		b >>= 1;
	}
	return res;
}
template<typename T> class sparse_table {//st表
  private:
	T st[N][32];//st[i][j]表示以i为起点, (2^j) - 1为长度的区间最大值
	int Log2[N];//卡常
  public:
	sparse_table(const int n_ = N - 1) {
		clear();
		Log2[0] = Log2[1] = 0;
		for(int i = 2; i <= n_; ++i)
			Log2[i] = Log2[i >> 1] + 1;
	}
	void clear() {
		memset(st, 0, sizeof st);
	}
	void build_st(const T *a) {
		for(int i = 1; i <= n; ++i)
			st[i][0] = a[i];

		for(int i = 1; i <= Log2[n]; ++i)//枚举区间长度
			for(int j = 1; j + ((1 << i) - 1) <= n; ++j)
				st[j][i] = max(st[j][i - 1], st[j + (1 << (i - 1))][i - 1]);
	}
	T query(const int l, const int r) {
		const int k = Log2[r - l + 1];
		return max(st[l][k], st[r - (1 << k) + 1][k]);
	}
};
template<typename T> class segment_tree {//线段树
  private:
	#define mid ((l + r) >> 1)
	#define ls (p << 1)
	#define rs (p << 1 | 1)
	struct node {
		T sum, maxval, minval, addtag, multag, covtag;
		T lmax, rmax, maxn;//最大子段和
		node(): sum(0), maxval(-INF), minval(INF), addtag(0), multag(1), covtag(-INF), lmax(0), rmax(0), maxn(0) {}
		node operator + (const node &b) const {
			node res;
			res.sum = sum + b.sum;
			res.maxval = max(maxval, b.maxval);
			res.minval = min(minval, b.minval);
			res.lmax = max(lmax, sum + b.lmax);
			res.rmax = max(rmax + b.sum, b.rmax);
			res.maxn = max(maxn, b.maxn, rmax + b.lmax);
			return res;
		}
	} t[N << 2];
  public:
	void build_tree(const int p, const int l, const int r, const T *a) const {//建树
		if(l == r)
		{
			t[p].sum = a[l];
			t[p].maxval = a[l];
			t[p].minval = a[l];
			t[p].lmax = a[l];
			t[p].rmax = a[l];
			t[p].maxn = a[l];
			return;
		}
		build_tree(ls, l, mid, a);
		build_tree(rs, mid + 1, r, a);
		t[p] = t[ls] + t[rs];
	}
	void modify(const int p, const int l, const int r, const int x, const int y, const T v, const int flag) const {//区间加, 乘, 覆盖(1, 2, 3)
		if(r < x || y < l) return;
		if(x <= l && r <= y)
		{
			if(flag == 1) Apply_add(p, l, r, v);
			if(flag == 2) Apply_mul(p, v);
			if(flag == 3) Apply_cov(p, l, r, v);
			return;
		}
		Push_down(p, l, r);
		if(x <= mid) modify(ls, l, mid, x, y, v, flag);
		if(y > mid) modify(rs, mid + 1, r, x, y, v, flag);
		t[p] = t[ls] + t[rs];
	}
	void modify_add(const int x, const int y, const T v) const {
		modify(1, 1, n, x, y, v, 1);
	}
	void modify_mul(const int x, const int y, const T v) const {
		modify(1, 1, n, x, y, v, 2);
	}
	void modify_cov(const int x, const int y, const T v) const {
		modify(1, 1, n, x, y, v, 3);
	}
	node query(const int p, const int l, const int r, const int x, const int y) const {
		if(x <= l && r <= y) return t[p];
		Push_down(p, l, r);
		if(y <= mid) return query(ls, l, mid, x, y);
		if(x > mid) return query(rs, mid + 1, r, x, y);
		return query(ls, l, mid, x, y) + query(rs, mid + 1, r, x, y);
	}
  private:
	void Apply_add(const int p, const int l, const int r, const T v) const {
		t[p].sum += (r - l + 1) * v;
		t[p].addtag += v;
		t[p].maxval += v;
		t[p].minval += v;
	}
	void Apply_mul(const int p, const T v) const {
		t[p].multag *= v;
		t[p].addtag *= v;
		t[p].sum *= v;
		t[p].maxval *= v;
		t[p].minval *= v;
	}
	void Apply_cov(const int p, const int l, const int r, const T v) const {
		t[p].covtag = v;
		t[p].sum = (r - l + 1) * v;
		t[p].maxval = v;
		t[p].minval = v;
		t[p].addtag = 0;
		t[p].multag = 1;
	}
	void Push_down(const int p, const int l, const int r) const {
		if(t[p].covtag != -INF)
		{
			Apply_cov(ls, l, mid, t[p].covtag);
			Apply_cov(rs, mid + 1, r, t[p].covtag);
			t[p].covtag = -INF;
		}
		if(t[p].multag != 1)
		{
			Apply_mul(ls, t[p].multag);
			Apply_mul(rs, t[p].multag);
			t[p].multag = 1;
		}
		if(t[p].addtag != 0)
		{
			Apply_add(ls, l, mid, t[p].addtag);
			Apply_add(rs, mid + 1, r, t[p].addtag);
			t[p].addtag = 0;
		}
	}
	#undef mid
	#undef ls
	#undef rs
};
template<typename T> class dynamic_segment_tree {//动态开点线段树
  private:
 	#define mid ((l + r) >> 1)
	#define ls t[p].lson
	#define rs t[p].rson
	int root, cnt;
	struct node {
		int lson, rson;
		T sum, maxval, minval, addtag, multag, covtag;
		T lmax, rmax, maxn;
		node(): sum(0), maxval(-INF), minval(INF), addtag(0), multag(1), covtag(-INF), lson(0), rson(0), lmax(0), rmax(0), maxn(0) {}
		node operator + (const node &b) const {
			node res;
			res.sum = sum + b.sum;
			res.maxval = max(maxval, b.maxval);
			res.minval = min(minval, b.minval);
			res.lmax = max(lmax, sum + b.lmax);
			res.rmax = max(rmax + b.sum, b.rmax);
			res.maxn = max(maxn, b.maxn, rmax + b.lmax);
			return res;
		}
	} t[N << 2];
  public:
	dynamic_segment_tree() {
		cnt = root = 1;
	}
	void modify(const int p, const int l, const int r, const int x, const int y, const T v, const int flag) const {
		if(r < x || y < l) return;
		if(x <= l && r <= y)
		{
			if(flag == 1) Apply_add(p, l, r, v);
			if(flag == 2) Apply_mul(p, v);
			if(flag == 3) Apply_cov(p, l, r, v);
			return;
		}
		Push_down(p, l, r);
		if(x <= mid) modify(ls, l, mid, x, y, v, flag);
		if(y > mid) modify(rs, mid + 1, r, x, y, v, flag);
		t[p] = t[ls] + t[rs];
	}
	void modify_add(const int x, const int y, const T v) const {
		modify(root, 1, n, x, y, v, 1);
	}
	void modify_mul(const int x, const int y, const T v) const {
		modify(root, 1, n, x, y, v, 2);
	}
	void modify_cov(const int x, const int y, const T v) const {
		modify(root, 1, n, x, y, v, 3);
	}
	node query(const int p, const int l, const int r, const int x, const int y) const {
		if(x <= l && r <= y) return t[p];
		Push_down(p, l, r);
		if(y <= mid) return query(ls, l, mid, x, y);
		if(x > mid) return query(rs, mid + 1, r, x, y);
		return query(ls, l, mid, x, y) + query(rs, mid + 1, r, x, y);
	}
  private:
	int New_node() {
		return ++cnt;
	}
	void Apply_add(const int p, const int l, const int r, const T v) const {
		t[p].sum += (r - l + 1) * v;
		t[p].addtag += v;
		t[p].maxval += v;
		t[p].minval += v;
	}
	void Apply_mul(const int p, const T v) const {
		t[p].multag *= v;
		t[p].addtag *= v;
		t[p].sum *= v;
		t[p].maxval *= v;
		t[p].minval *= v;
	}
	void Apply_cov(const int p, const int l, const int r, const T v) const {
		t[p].covtag = v;
		t[p].sum = (r - l + 1) * v;
		t[p].maxval = v;
		t[p].minval = v;
		t[p].addtag = 0;
		t[p].multag = 1;
	}
	void Push_down(const int p, const int l, const int r) const {
		if(ls == 0) ls = New_node();
		if(rs == 0) rs = New_node();
		if(t[p].covtag != -INF)
		{
			Apply_cov(ls, l, mid, t[p].covtag);
			Apply_cov(rs, mid + 1, r, t[p].covtag);
			t[p].covtag = -INF;
		}
		if(t[p].multag != 1)
		{
			Apply_mul(ls, t[p].multag);
			Apply_mul(rs, t[p].multag);
			t[p].multag = 1;
		}
		if(t[p].addtag != 0)
		{
			Apply_add(ls, l, mid, t[p].addtag);
			Apply_add(rs, mid + 1, r, t[p].addtag);
			t[p].addtag = 0;
		}
	}
	#undef mid
	#undef ls
	#undef rs
};
template<typename T> class persistent_segment_tree {//可持久化线段树
  private: 
	int root[N], cnt;
	struct node {
		int lson, rson, data;
	} t[N << 5];
	#define mid ((l + r) >> 1)
	#define ls t[p].lson
	#define rs t[p].rson
	int new_node() {
		return ++cnt;
	}
	int clone(int p) {
		t[new_node()] = t[p];//复制一个新节点
		return cnt;//返回节点编号
	}
  public:
	int build_tree(int l, int r, int *a) {//建树
		int p = new_node();//动态开点
		if(l == r)
		{
			t[p].data = a[l];
			return p;
		}
		ls = build_tree(l, mid, a);
		rs = build_tree(mid + 1, r, a);
		return p; //返回根节点
	}
	int modify(int p, int l, int r, int x, int v) {
		p = clone(p);
		if(l == r)
		{
			t[p].data = v;
			return p;
		}
		if(x <= mid) ls = modify(ls, l, mid, x, v);
		else rs = modify(rs, mid + 1, r, x, v);
		return p;
	}
	int query(int p, int l, int r, int x) {
		if(l == r) return t[p].data;
		if(x <= mid) return query(ls, l, mid, x);
		else return query(rs, mid + 1, r, x);
	}
	#undef mid
	#undef ls
	#undef rs
};
template<typename T> class rotate_treap {//旋转treap
  private:
	#define ls(p) t[p].lson
	#define rs(p) t[p].rson
	int root, cnt;
	struct node {
		int lson, rson;//左右儿子
		T val;//值
		int key, tot, size;//随机优先级, 值的个数, 子树大小
		node(): lson(0), rson(0), val(0), key(0), tot(0), size(0) {}
	} t[N];
  public:
	rotate_treap() {
		Build_treap();
	}
	void insert(int &p, const T val) const {//插入值为val的新节点
		if(p == 0)//子树为空, 新建
		{
			p = New_node(val);
			return;
		}
		if(val == t[p].val)//如果值和当前节点相同
		{
			++t[p].tot;//个数加1
			Push_up(p);//更新子树大小
			return;
		}
		if(val < t[p].val)
		{
			insert(ls(p), val);//要插到左边
			if(t[p].key < t[ls(p)].key)//不满足优先级
				Rotate_r(p);//右旋
		}
		else
		{
			insert(rs(p), val);//要插到右边
			if(t[p].key < t[rs(p)].key)//不满足优先级
				Rotate_l(p);//左旋
		}
		Push_up(p);//更新节点子树大小
	}
	void remove(int &p, const T val) const {//删除1个值为val的节点
		if(p == 0) return;//为空直接返回
		if(val == t[p].val)//找到值为val的节点
		{
			if(t[p].tot > 1)//个数超过一个
			{
				--t[p].tot;//个数减1
				Push_up(p);//更新子树大小
				return;
			}
			if(ls(p) != 0 || rs(p) != 0)//存在子树
			{
				if(rs(p) == 0 || t[ls(p)].key > t[rs(p)].key)
					Rotate_r(p), remove(rs(p), val);//右旋
				else Rotate_l(p), remove(ls(p), val);//左旋
				Push_up(p);//更新子树大小
			}
			else p = 0;//到叶子节点
			return;
		}
		val <= t[p].val ? remove(ls(p), val) : remove(rs(p), val);//递归查找要删除的数的位置
		Push_up(p);//更新节点子树大小
	}
	int get_rank(const int p, const T val) const {//查排名
		if(p == 0) return 0;//节点为空返回0
		if(val == t[p].val) return t[ls(p)].size + 1;//左子树个数 + 1就是排名
		if(val < t[p].val) return get_rank(ls(p), val);//去左子树里面查找
		return get_rank(rs(p), val) + t[ls(p)].size + t[p].tot;//同时左子树个数 + 当前节点个数 <= 他
	}
	T get_val(const int p, const int k) const {//查排名第k的值
		if(p == 0) return INF;//节点为空返回INF
		if(t[ls(p)].size >= k) return get_val(ls(p), k);//向左查找
		if(t[ls(p)].size + t[p].tot >= k) return t[p].val;//当前就是第k大的数
		return get_val(rs(p), k - t[ls(p)].size - t[p].tot);//在右子树里找剩下的
	}
	T get_prev(const T val) const {//查前驱
		T res = -INF;
		int p = root;
		while(p != 0)
		{
			if(val >= t[p].val)
				res = t[p].val, p = rs(p);
			else p = ls(p);
		}
		return res;
	}
	T get_next(const T val) const {//查后继
		T res = INF;
		int p = root;
		while(p != 0)
		{
			if(val <= t[p].val)
				res = t[p].val, p = ls(p);
			else p = rs(p);
		}
		return res;
	}
  private:
	int New_node(const T val) {//创建值为val的新节点
		t[++cnt].val = val;
		t[cnt].key = rand();//随机优先级
		t[cnt].tot = t[cnt].size = 1;
		return cnt;//返回节点编号
	}
	void Push_up(const int p) const {//更新节点子树大小
		t[p].size = t[ls(p)].size + t[ls(p)].size + t[p].tot;
		//节点子树的大小 = 左子树 + 右子树 + 当前节点值的个数
	}
	void Build_treap() const {
		New_node(-INF);
		New_node(INF);
		root = 1, rs(root) = 2;
		Push_up(root);
	}
	void Rotate_r(int &p) const {//右旋
		int q = ls(p);
		ls(p) = rs(q);
		rs(q) = p;
		p = q;
		Push_up(rs(q));
		Push_up(p);
	}
	void Rotate_l(int &p) const {//左旋
		int q = rs(p);
		rs(p) = ls(q);
		ls(q) = p;
		p = q;
		Push_up(ls(p));
		Push_up(p);
	}
	#undef ls
	#undef rs
};
template<typename T> class fhq_treap {//范浩强无旋treap
  private:
	#define ls(p) t[p].lson
	#define rs(p) t[p].rson
	int root, cnt;
	struct node {
		int lson, rson;//左右儿子
		T val;//值
		int key, size;//随机优先级, 子树大小
		node(): lson(0), rson(0), val(0), key(0), size(0) {}
	} t[N];
  public:
	fhq_treap() {
		Build_treap();
	}
	void insert(const T val) const {//插入值为val的节点
		int x, y;
		Split_by_val(root, val, x, y);
		root = Merge(Merge(x, New_node(val)), y);
	}
	void remove(const T val) const {//删除值为val的节点
		int x, y, z;
		Split_by_val(root, val, x, z);//把root树分为x, z两棵树, <= val的为x树, > val的为z树
		Split_by_val(x, val - 1, x, y);//把x树分为x, y两棵树, <= val - 1的为x树, == val的为y树
		y = Merge(ls(y), rs(y));//直接让y树的左右儿子进行合并, 忽略y节点(删除y点)
		root = Merge(Merge(x, y), z);//把x, y合并, 再与原来的z树合并
	}
	int get_rank(const T val) const {//查排名
		int x, y;
		Split_by_val(root, val - 1, x, y);//按val - 1分裂
		int res = t[x].size + 1;//x树大小 + 1就是排名
		root = Merge(x, y);//把x, y树合并, 还原root
		return res;
	}
	T get_val(const int p, const int k) const {//查排名第k
		int tmp = t[ls(p)].size + 1;//当前节点排名 = 左子树节点个数 + 1
		if(tmp == k) return t[p].val;//刚好等于k, 找到了
		if(tmp > k) return get_val(ls(p), k);//在左子树里寻找
		return get_val(rs(p), k - tmp);//已经找到tmp个比他小的, 再找k - tmp
	}
	T get_prev(const T val) const {//查前驱
		int x, y;
		Split_by_val(root, val - 1, x, y);
		T res = get_val(x, t[x].size);//前驱即在x树内排名为size的数值
		root = Merge(x, y);
		return res;
	}
	T get_next(const T val) const {//查后继
		int x, y;
		Split_by_val(root, val, x, y);
		T res = get_val(y, 1);//后继即在y树内排名为1的数值
		root = Merge(x, y);
		return res;
	}
  private:
	int New_node(const T val) {//创建值为val的新节点
		int x = ++cnt;
		ls(x) = rs(x) = 0;
		t[x].size = 1;
		t[x].val = val;
		t[x].key = rand();//随机优先级
		return x;//返回节点编号
	}
	void Build_treap() const {
		New_node(INF);
		New_node(-INF);
		root = 1, rs(root) = 2;
		Push_up(root);
	}
	void Push_up(const int p) const {//更新节点子树大小
		if(p == 0) return;
		t[p].size = t[ls(p)].size + t[rs(p)].size + 1;
	}
	void Split_by_val(const int p, const T k, int &x, int &y) const {//将p子树以按k拆成x和y子树, 其中x中的点 <= k, y中的点 > k
		if(p == 0)
		{
			x = y = 0;//分裂到头了
			return;
		}
		if(t[p].val <= k)//当前节点小, 放x上
		{
			x = p;//x上暂放p子树, 去看p的右子树
			Split_by_val(rs(p), k, rs(p), y);//去看p右子树, 如果有 < key的应保留在p右子树上(最后给x), 否则放在y上
		}
		else
		{
			y = p;
			Split_by_val(ls(p), k, x, ls(p));//去看p左子树, 如果有 >= key的应放在p左子树上(最后给y), 否则放在x上
		}
		Push_up(p);//防止更新0点
	}
	int Merge(const int x, const int y) const {//合并x, y为根的树, x子树的值 <= y子树的值, 返回根节点

		if(x == 0 || y == 0) return x | y;//有1个子树为空返回另一个子树
		if(t[x].key > t[y].key)//x在堆中是在y的上方,而值小于y, 故在y的左上方
		{
			rs(x) = Merge(rs(x), y);//x的右子树和y合并
			Push_up(x);
			return x;
		}
		else//x在y的左下方
		{
			ls(y) = Merge(x, ls(y));//x和y的左子树合并
			Push_up(y);
			return y;
		}
	}
	#undef ls
	#undef rs
};
template<typename T> class remove_heap{//可删堆
  private:
  	priority_queue<T> q1, q2;//q1存现在有的, q2存待删除的
	void update() {
		while(!q1.empty() && !q2.empty() && q1.top() == q2.top())
			q1.pop(), q2.pop();
	}
  public:
	void push(T v) {
		q1.push(v);
	}
	void remove(T v) {
		q2.push(v);
	}
	bool empty() {
		update();
		return q1.empty();
	}
	void clear() {
		while(!q1.empty())
			q1.pop();
		while(!q2.empty())
			q2.pop();
	}
	T top() {
		update();
		return q1.top();
	}
};
template<typename T> class my_list {//双向循环head链表
  private:
	struct node {
		T data;
		node* prev, next;
		node(): data(0), prev(nullptr), next(nullptr) {}
	};
	typedef node* nodeptr;
	nodeptr phead;
	int length;
	nodeptr New_node(const T x) const {
		nodeptr now = new node;
		now->data = x;
		return now;
	}
	void Build_list(nodeptr* pphead) const {
		*pphead = New_node(0);
		(*pphead)->next = *pphead;
		(*pphead)->prev = *pphead;
	}
  public:
	my_list() {
		phead = nullptr;
		Build_list(&phead);
		length = 0;
	}
	~my_list() {
		if(phead == nullptr) return;
		clear();
		delete phead;
		phead = nullptr;
	}
	void clear() const {
		if(phead == nullptr) return;
		nodeptr now = phead->next;
		while(now != phead)
		{
			nodeptr nxt = now->next;
			delete now;
			now = nullptr;
			now = nxt;
		}
	}
	void print() const {
		if(phead == nullptr) return;
		nodeptr now = phead->next;
		while(now != phead)
		{
			cout << now->data << ' ';
			now = now->next;
		}
		cout << '\n';
	}
	void unprint() const {
		if(phead == nullptr) return;
		nodeptr now = phead->prev;
		while(now != phead)
		{
			cout << now->data << ' ';
			now = now->prev;
		}
		cout << '\n';
	}
	void push_back(const T x) {
		if(phead == nullptr) return;
		nodeptr tail = phead->prev;
		nodeptr newnode = New_node(x);
		tail->next = newnode;
		newnode->prev = tail;
		newnode->next = phead;
		phead->prev = newnode;
		++length;
	}
	void pop_back() {
		if(phead == nullptr) return;
		if(phead->next == phead) return;
		nodeptr tail = phead->prev;
		phead->prev = tail->prev;
		phead->prev->next = phead;
		delete tail;
		tail = nullptr;
		--length;
	}
	void push_front(const T x) {
		nodeptr first = phead->next;
		nodeptr newnode = New_node(x);
		phead->next = newnode;
		newnode->prev = phead;
		newnode->next = first;
		first->prev = newnode;
		++length;
	}
	void pop_front() {
		if(phead == nullptr) return;
		if(phead->next == phead) return;
		nodeptr first = phead->next;
		nodeptr second = first->next;
		phead->next = second;
		second->prev = phead;
		delete first;
		first = nullptr;
		--length;
	}
	nodeptr find(const T x) const {
		if(phead == nullptr) return nullptr;
		nodeptr now = phead->next;
		while(now != phead)
		{
			if(now->data == x)
				return now;
			now = now->next;
		}
		return nullptr;
	}
	void insert_front(nodeptr pos, const T x) {//在pos前面插入x
		if(pos == nullptr) return;
		nodeptr posprev = pos->prev;
		nodeptr newnode = New_node(x);
		posprev->next = newnode;
		newnode->prev = posprev;
		newnode->next = pos;
		pos->prev = newnode;
		++length;
	}
	void insert_back(nodeptr pos, const T x) {//在pos后面插入x
		if(pos == nullptr) return;
		nodeptr newnode = new_node(x);
		newnode->prev = pos;
		newnode->next = pos->next;
		pos->next->prev = newnode;
		pos->next = newnode;
		++length;
	}
	void remove(nodeptr pos) {
		if(pos == nullptr) return;
		if(pos == phead) return;
		nodeptr posprev = pos->prev;
		nodeptr posnext = pos->next;
		delete pos;
		pos = nullptr;
		posprev->next = posnext;
		posnext->prev = posprev;
		--length;
	}
	int size() const {
		return length;
	}
	bool empty() const {
		return length > 0 ? true : false;
	}
	int front() const {
		if(phead == nullptr) return INT_MIN;
		return phead->next->data;
	}
	int back() const {
		if(phead == nullptr) return INT_MIN;
		return phead->prev->data;
	}
};
class treap_Pro_Max {//维护了许多信息的treap
	queue<int> trashcan;
	struct Node {
		int lson, rson, size, val, cov, key;
		int rev_tag, cov_tag;
		int sum, lmax, rmax, maxn;
	} t[N];
	int root, cnt;
	int new_node(int k) {
		int x;
		if(!trashcan.empty())//先垃圾篓里面找
			x = trashcan.front(), trashcan.pop();
		else x = ++cnt;
		t[x].lson = t[x].rson = t[x].cov = t[x].rev_tag = t[x].cov_tag = 0;
		t[x].size = 1;
		t[x].val = t[x].sum = t[x].maxn = k;
		t[x].lmax = t[x].rmax = max(0, k);
		t[x].key = rand();//随机优先级
		return x;
	}
	void push_up(int p) {
		if(p == 0) return;
		t[p].size = t[t[p].lson].size + t[t[p].rson].size + 1;
		t[p].sum = t[t[p].lson].sum + t[t[p].rson].sum + t[p].val;
		t[p].lmax = max(t[t[p].lson].lmax, t[t[p].lson].sum + t[p].val + t[t[p].rson].lmax, 0);//与0取最大
		t[p].rmax = max(t[t[p].rson].rmax, t[t[p].rson].sum + t[p].val + t[t[p].lson].rmax, 0);
		t[p].maxn = max(t[p].val, t[p].val + t[t[p].lson].rmax + t[t[p].rson].lmax);
		if(t[p].lson) t[p].maxn = max(t[p].maxn, t[t[p].lson].maxn);
		if(t[p].rson) t[p].maxn = max(t[p].maxn, t[t[p].rson].maxn);
	}
	void apply_rev(int p) {//对以p为根的树反转
		if(p == 0) return ;
		swap(t[p].lson, t[p].rson);
		swap(t[p].lmax, t[p].rmax);
		t[p].rev_tag ^= 1;
	}
	void apply_cov(int p, int c) {//对以p为根的树覆盖
		t[p].val = t[p].cov = c;
		t[p].sum = t[p].size * c;
		t[p].lmax = t[p].rmax = max(0, t[p].sum);
		t[p].maxn = max(c, t[p].sum);
		t[p].cov_tag = 1;
	}
	void push_down(int p) {//下传标记
		if(p == 0) return;
		if(t[p].rev_tag != 0)//有标记
		{
			if(t[p].lson != 0) apply_rev(t[p].lson);
			if(t[p].rson != 0) apply_rev(t[p].rson);
			t[p].rev_tag = 0;//清空
		}
		if(t[p].cov_tag != 0)//有标记
		{
			if(t[p].lson != 0) apply_cov(t[p].lson, t[p].cov);
			if(t[p].rson != 0) apply_cov(t[p].rson, t[p].cov);
			t[p].cov_tag = t[p].cov = 0;//清空
		}
	}
	void trash(int p) {//回收以p为根的子树
		if(p == 0) return;
		trashcan.push(p);
		if(t[p].lson != 0) trash(t[p].lson);//回收左儿子
		if(t[p].rson != 0) trash(t[p].rson);//回收右儿子
	}
	void split_by_rank(int p, int k, int &x, int &y) {//以第k为界限分裂
		if(p == 0)
		{
			x = y = 0;
			return;
		}
		push_down(p);
		if(t[t[p].lson].size + 1 <= k)//左边装不下
		{
			x = p;
			split_by_rank(t[p].rson, k - t[t[p].lson].size - 1, t[p].rson, y);
		}
		else
		{
			y = p;
			split_by_rank(t[p].lson, k, x, t[p].lson);
		}
		push_up(p);
	}
	int merge(int x, int y) {//合并
		if(x == 0 || y == 0) return x + y;
		if(t[x].key <= t[y].key)
		{
			push_down(x);
			t[x].rson = merge(t[x].rson, y);
			push_up(x);
			return x;
		}
		else
		{
			push_down(y);
			t[y].lson = merge(x, t[y].lson);
			push_up(y);
			return y;
		}
	}
	int a[N];
	int build(int l, int r) {//构造a数组的平衡树, 避免一个一个插入
		if(l == r) return new_node(a[l]);
		int mid = (l + r) >> 1;
		return merge(build(l, mid), build(mid + 1, r));
	}
	void insert() {//从pos处插入tot个
		int pos, tot;
		cin >> pos >> tot;
		int x, y;
		split_by_rank(root, pos, x, y);
		for(int i = 1; i <= tot; ++i)
			cin >> a[i];
		x = merge(x, build(1, tot));
		root = merge(x, y);
	}
	void delet() {//从pos处删除tot个
		int pos, tot;
		cin >> pos >> tot;
		int x, y, z;
		split_by_rank(root, pos - 1, x, y);
		split_by_rank(y, tot, y, z);
		trash(y);
		root = merge(x, z);
	}
	void make_same() {//从pos处覆盖tot个c
		int pos, tot, c;
		cin >> pos >> tot >> c;
		int x, y, z;
		split_by_rank(root, pos - 1, x, y);
		split_by_rank(y, tot, y, z);
		apply_cov(y, c);
		root = merge(merge(x, y), z);
	}
	void Reverse() {//从pos起翻转tot个
		int pos, tot;
		cin >> pos >> tot;
		int x, y, z;
		split_by_rank(root, pos - 1, x, y);
		split_by_rank(y, tot, y, z);
		apply_rev(y);
		root = merge(merge(x, y), z);
	}
	void get_sum() {//a到b区间和
		int a, b;
		cin >> a >> b;
		int x, y, z;
		split_by_rank(root, a - 1, x, y);
		split_by_rank(y, b, y, z);
		cout << t[y].sum << '\n';
		root = merge(merge(x, y), z);
	}
	void max_sum() {//最大子段和
		cout << t[root].maxn << '\n';
	}
};
struct Dijkstra {//最短路
	chain_forward_star<> C;
	int dis[N], dis1[N];//距离
	bool vis[N];//标记
	struct node {
		int name, dis;
		bool operator < (const node &x) const {
			return x.dis < dis;
		}
	};
	void dijkstra(int s) {//最短路
		memset(dis, 0x3f, sizeof dis);//初始化最大值
		dis[s] = 0;
		priority_queue<node> pq;
		pq.push({s, 0});
		while(!pq.empty())
		{
			node tmp = pq.top();
			pq.pop();
			int u = tmp.name;
			if(vis[u]) continue;
			vis[u] = true;
			for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
			{
				int v = C.e[i].v, w = C.e[i].w;
				if(dis[u] + w < dis[v])
				{
					dis[v] = dis[u] + w;
					if(!vis[v]) pq.push({v, dis[v]});
				}
			}
		}
	}
	void dijkstra1(int s) {//严格次短路
		memset(dis, 0x3f, sizeof dis);
		memset(dis1, 0x3f, sizeof dis1);
		dis[s] = 0;
		priority_queue<node> pq;
		pq.push({s, 0});
		while(!pq.empty())
		{
			node tmp = pq.top();
			pq.pop();
			int u = tmp.name;
			for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
			{
				int v = C.e[i].v, w = C.e[i].w;
				if(dis[u] + w < dis[v])
				{
					dis1[v] = dis[v];
					dis[v] = dis[u] + w;
					pq.push({v, dis[v]});
					pq.push({v, dis1[v]});
				}
				else
				{
					if(dis[u] + w < dis1[v] && dis[v] != dis[u] + w)
					{
						dis1[v] = dis[u] + w;
						pq.push({v, dis[v]});
						pq.push({v, dis1[v]});
					}
					else if(dis1[u] + w < dis1[v] && dis1[u] + w != dis[v])
					{
						dis1[v] = dis1[u] + w;
						pq.push({v, dis[v]});
						pq.push({v, dis1[v]});
					}
				}
			}
		}
	}
};
struct Math {//数学算法
	ll qpow(ll a, ll b, ll p) {//快速幂
		ll res = 1;
		a %= p;
		while(b != 0)
		{
			if((b & 1) == 1) res = res * a % p;
			a = a * a % p;
			b >>= 1;
		}
		return res;
	}
	ll qmul(ll a, ll b, ll p) {//龟速乘
		ll res = 0;
		a %= p, b %= p;
		while(b != 0)
		{
			if(b & 1) res = (res + a) % p;
			a =  a * 2 % p;
			b >>= 1;
		}
		return res;
	}
	int exgcd(int a, int b, int &x, int &y) {//返回gcd, x, y为ax + by = gcd(a, b)的一组可行解
		if(b == 0)
		{
			x = 1, y = 0;
			return a;
		}
		int gcd = exgcd(b, a % b, x, y);
		int t = x;
		x = y, y = t - a / b * y;
		return gcd;
	}
	void exgcd1(int a, int b, int &x, int &y) {
		if(b == 0) x = 1, y = 0;
		else exgcd1(b, a % b, y, x), y -= a / b * x;
	}
	int fac[N];//阶乘
	int inv[N];//逆元
	ll cata[N];//卡特兰数
	int C(int n, int m, int p) {
		if(m > n) return 0;
		return (fac[n] * inv[fac[m]] % p * inv[fac[n - m]] % p);
	}
	int lucas(int n, int m, int p) {
		if(m == 0) return 1;
		return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p;
	}
	void work(int p) {
		fac[0] = 1;
		for(int i = 1; i <= n; ++i)
			fac[i] = fac[i - 1] * i % p;
		inv[1] = 1;
		for(int i = 2; i <= n; ++i)
			inv[i] = (p - p / i) * inv[p % i] % p;
		cata[1] = 1;
		for(int i = 2; i <= n; ++i)
			cata[i] = cata[i - 1] * (4 * i - 2) / (i + 1);
	}
	bool notprime[N];
	int prime[N];
	int phi[N];//欧拉函数φ
	int factornum[N], g[N];//因数个数, 临时数组 
	void make() {//线性筛素数
		prime[0] = 0;
		phi[1] = 1;
		notprime[1] = true;
		factornum[1] = 1;
		for(int i = 2; i <= n; ++i)
		{
			if(!notprime[i])
				prime[++prime[0]] = i, phi[i] = i - 1, factornum[i] = 2, g[i] = 1; 
			for(int j = 1; j <= prime[0] && i * prime[j] <= n; ++j)
			{
				notprime[i * prime[j]] = true;
				if(i % prime[j] == 0)
				{
					phi[i * prime[j]] = phi[i] * prime[j];
					g[i * prime[j]] = g[i] + 1;
					factornum[i * prime[j]] = factornum[i] / (g[i] + 1) * (g[i] + 2);
					break;
				}
				phi[i * prime[j]] = phi[i] * phi[j];
				g[i * prime[j]] = 1;
				factornum[i * prime[j]] = factornum[i] * 2;
			}
		}
	}
	void sequence_partitioning() {//数列分块
		int k;
		for(int l = 1, r = 0; l <= n; l = r + 1)
		{
			r = k / l == 0 ? n : min(k / (k / l), n);
			//do other things
		}
	}
	int a[N][N], n, m;
	void gauss_elimination() {//高斯消元 
		m = n + 1;
		for(int i = 1; i <= n; ++i)
		{
			int max_row = i;
			for(int j = i + 1; j <= n; ++j)
				if(fabs(a[j][i]) > fabs(a[max_row][i]))
					max_row = j;
			for(int j = 1; j <= m; ++j)
				swap(a[max_row][j], a[i][j]);
			if(fabs(a[i][i]) < eps)//如果为0, 直接无解
			{
				cout << "No Solution";
				return;
			}
			for(int j = m; j >= 1; --j)//i行系数化1
				a[i][j] /= a[i][i];
			for(int j = 1; j <= n; ++j)
			{
				if(j == i) continue;
				double tmp = a[j][i] / a[i][i];
				for(int k = 1; k <= m; ++k)
					a[j][k] -= a[i][k] * tmp;
			}
		}
		for(int i = 1; i <= n; ++i)
			cout << fixed << setprecision(2) << a[i][m] << '\n';
	}
	ll bsgs(ll a, ll b, ll p) {// a^x === b mod p
		map<ll, ll> hash;//建立hash表
		hash.clear();
		b %= p;
		ll t = (int)sqrt(p) + 1;
		for(int i = 0; i < t; ++i)
			hash[1ll * b * qpow(a, i, p) % p] = i;
		a = qpow(a, t, p);
		if(a == 0) return b == 0 ? 1 : -1;
		for(int i = 0; i <= t; ++i)
		{
			ll val = qpow(a, i, p);
			int j = hash.find(val) == hash.end() ? -1 : hash[val];
			if(j >= 0 && i * t - j >= 0) return i * t - j;
		}
		return -1;
	}
};
struct Least_Common_Ancestors {//最近公共祖先
	chain_forward_star<> C;
	int depth[N];//深度
	int dis[N];//到根节点的距离
	int Log2[N];
	int fa[N][22];//fa[i][j]为i的第(2^j)父亲
	Least_Common_Ancestors(int n_ = N - 1) {
		Log2[0] = Log2[1] = 0;
		for(int i = 2; i <= n_; ++i)
			Log2[i] = Log2[i >> 1] + 1;
	}
	void dfs(int now, int f, int len) {//当前, 父亲, 边的长度
		depth[now] = depth[f] + 1;
		fa[now][0] = f;
		dis[now] = dis[f] + len;
		for(int i = 1; i <= 21; ++i)
			fa[now][i] = fa[fa[now][i - 1]][i - 1];
		for(int i = C.head[now]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v, w = C.e[i].w;
			if(v == f) continue;
			dfs(v, now, w);
		}
	}
	int lca(int x, int y) {//最近公共祖先
		if(x == y) return x;
		if(depth[x] < depth[y]) swap(x, y);
		for(int s = Log2[depth[x] - depth[y]]; s >= 0; --s)//跳到同一层
			if(depth[fa[x][s]] >= depth[y])
				x = fa[x][s];
		if(x == y) return x;
		for(int s = Log2[depth[x]]; s >= 0; --s)//一起向上跳
			if(fa[x][s] != fa[y][s])
				x = fa[x][s], y = fa[y][s];
		return fa[x][0];
	}
	int query(int x, int y) {
		int k = lca(x, y);
		return dis[x] + dis[y] - (dis[k] << 1);
	}
};
struct Difference_Constraint {//差分约束
	chain_forward_star<> C;
	int dis[N];//距离
	int cnt[N];//入队次数
	bool in_queue[N];//是否在队列里
	bool spfa(int s) {//返回true则有负环
		memset(dis, 0x3f, sizeof dis);
		dis[s] = 0;
		queue<int> q;
		q.push(s);
		in_queue[s] = true;
		while(!q.empty())
		{
			int u = q.front();
			q.pop();
			in_queue[u] = false;
			for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
			{
				int v = C.e[i].v, w = C.e[i].w;
				if(dis[v] > dis[u] + w)
				{
					dis[v] = dis[u] + w;
					if(!in_queue[v])
					{
						++cnt[v];
						if(cnt[v] > n + 1) return true;
						q.push(v);
						in_queue[v] = true;
					}
				}
			}
		}
		return false;
	}
};
struct Kruskal {//最小生成树
	struct edge {
		int u, v, w;
		bool operator < (const edge &x) const {
			return w < x.w;
		}
	} e[M];
	union_find U;
	int kruskal() {//-1即失败, 否则返回生成树的权值
		int tot = 0;//已经选了多少条边
		int res = 0;
		sort(e + 1, e + m + 1);
		for(int i = 1; i <= m; ++i)
			if(U.merge(e[i].u, e[i].v))
			{
				res += e[i].w;
				++tot;
				if(tot == n - 1) break;
			}
		if(tot != n - 1) return -1;
		return res;
	}
};
struct Prim {//最小生成树
	chain_forward_star<> C;
	int dis[N];
	bool vis[N];
	struct node {
		int name, dis;
		bool operator < (const node &x) const {
			return x.dis < dis;
		}
	};
	int prim() {//-1即失败, 否则返回生成树大小
		priority_queue<node> pq;
		int res = 0, tot = 0;//生成树边数
		memset(dis, 0x3f, sizeof dis);
		dis[1] = 0;
		pq.push({1, 0});
		while(tot < n && !pq.empty())//边数 = 点数 - 1
		{
			node tmp = pq.top();
			pq.pop();
			int u = tmp.name;
			if(vis[u]) continue;
			vis[u] = true;
			++tot;
			res += tmp.dis;
			for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
			{
				int v = C.e[i].v, w = C.e[i].w;
				if(!vis[v] && dis[v] > w)
				{
					dis[v] = w;
					pq.push({v, w});
				}
			}
		}
		if(tot < n) return -1;//不连通
		return res;
	}
};
struct Hungarian_Algorithm {//二分图最大匹配匈牙利算法
	chain_forward_star<> C;
	int marry[N];
	bool vis[N];
	bool dfs(int u) {
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v;
			if(vis[v]) continue;
			vis[v] = true;
			if(marry[v] == 0 || dfs(marry[v]))
			{
				marry[v] = u;
				return true;
			}
		}
		return false;
	}
	int find_max_matching() {
		int matching = 0;
		for(int i = 1; i <= n; ++i)
		{
			memset(vis, false, sizeof vis);
			if(dfs(i)) ++matching;
		}
		return matching;
	}
};
struct Topological_Sorting {//拓扑排序
	int in[N];
	int res[N], cnt;
	chain_forward_star<> C;
	Topological_Sorting(): cnt(0) {}
	bool topo() {//返回true有环, 返回false无环
		queue<int> q;
		for(int i = 1; i <= n; ++i)
			if(in[i] == 0)
			{
				q.push(i);
				res[++cnt] = i;
			}
		while(!q.empty())
		{
			int u = q.front();
			q.pop();
			for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
			{
				int v = C.e[i].v;
				--in[v];
				if(in[v] == 0)
				{
					q.push(v);
					res[++cnt] = v;
				}
			}
		}
		if(cnt < n) return true;
		return false;
	}
};
struct Knuth_Morris_Pratt {//kmp字符串匹配
	int n, m;//n = lena, m = lenb
	int fail[N], f[N];
	int res;//a在b中出现的次数
	char a[N], b[N];
	Knuth_Morris_Pratt(): res(0) {}
	void kmp() {
		fail[1] = 0;
		for(int i = 2, j = 0; i <= n; ++i)
		{
			while(j > 0 && a[i] != a[j + 1])
				j = fail[j];
			if(a[i] == a[j + 1]) ++j;
			fail[i] = j;
		}
		for(int i = 1, j = 0; i <= m; ++i)
		{
			while(j > 0 && (j == n || b[i] != a[j + 1]))
				j = fail[j];
			if(b[i] == a[j + 1]) ++j;
			f[i] = j;
			if(f[i] == n) ++res;
		}
	}
};
struct Tarjan_Strong_Connectivity_Component {//强联通分量
	chain_forward_star<> C;
	int dfn[N], low[N], timestamp;
	stack<int> stk;
	bool in_stk[N];
	int scc[N], scc_cnt, scc_size[N];
	Tarjan_Strong_Connectivity_Component(): timestamp(0), scc_cnt(0) {}
	void tarjan(int u) {
		dfn[u] = low[u] = ++timestamp;
		stk.push(u);
		in_stk[u] = true;
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v;
			if(dfn[v] == 0)
			{
				tarjan(v);
				low[u] = min(low[u], low[v]);
			}
			else if(in_stk[v])
				low[u] = min(low[u], low[v]);
		}
		if(dfn[u] == low[u])
		{
			++scc_cnt;
			while(stk.top() != u)
			{
				scc[stk.top()] = scc_cnt;
				++scc_size[scc_cnt];
				in_stk[stk.top()] = false;
				stk.pop();
			}
			scc[stk.top()] = scc_cnt;
			++scc_size[scc_cnt];
			in_stk[stk.top()] = false;
			stk.pop();
		}
	}
};
struct Tarjan_Cutvtex {//割点
	chain_forward_star<> C;
	int dfn[N], low[N], timestamp;
	bool cutvertex[N];//是否是割点
	int res;//割点数
	Tarjan_Cutvtex(): timestamp(0), res(0) {}
	void tarjan(int u, int fa) {
		dfn[u] = low[u] = ++timestamp;
		int son = 0;
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v;
			if(dfn[v] == 0)
			{
				++son;
				tarjan(v, u);
				low[u] = min(low[u], low[v]);
				if(fa != u && low[v] >= dfn[u] && son != 0 && !cutvertex[u])
				{
					cutvertex[u] = true;
					++res;
				}
			}
			else if(v != fa)
				low[u] = min(low[u], dfn[v]);
		}
		if(fa == u && son >= 2 && !cutvertex[u])
		{
			cutvertex[u] = true;
			++res;
		}
	}
};
struct Longest_Common_Subsequence {//最长公共子序列
	int dp[N][N], a[N], b[N];
	int f[N], map[N], ans;
	void lcs1() {
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= m; ++j)
				if(a[i] == b[j])
					dp[i][j] = dp[i - 1][j - 1] + 1;
				else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
		ans = dp[n][m];
	}
	void lcs2() {
		for(int i = 1; i <= n; ++i)
			map[a[i]] = i;
		for(int i = 1; i <= m; ++i)
			f[i] = 0x3f3f3f3f;
		for(int i = 1; i <= m; ++i)
		{
			int l = 0, r = ans, mid;
			if(map[b[i]] > f[ans])
				f[++ans] = map[b[i]];
			else
			{
				while(l < r)
				{
					mid = (l + r) / 2;
					if(f[mid] > map[b[i]])
						r = mid;
					else l = mid + 1;
				}
				f[l] = min(map[b[i]], f[l]);
			}
		}
	}
};
struct Longest_Increasing_Subsequence {//最长上升子序列
	int a[N], f[N], ans;
	void lis() {
		for(int i = 1; i <= n; ++i)
		{
			int j = lower_bound(f + 1, f + n + 1, a[i]) - f - 1;
			ans = max(ans, j + 1);
			f[j] = a[i];
		}
	}
};
struct Manacher {//马拉车求回文串
	string s, t;
	int ans, p[N];
	void manacher() {
		t = "$#";
		int n = s.size();
		for(int i = 0; i < n; ++i)
		{
			t += s[i];
			t += "#";
		}
		int mr = 0, mid = 0, m = t.size();
		for(int i = 1; i < m; ++i)
		{
			if(mr > i)
				p[i] = min(p[mid * 2 - i], mr - i);
			else p[i] = 1;
			while(t[i + p[i]] == t[i - p[i]])
				++p[i];
			if(mr < p[i] + i)
			{
				mr = p[i] + i;
				mid = i;
			}
			ans = max(ans, p[i]);
		}
		--ans;
	}
};
struct The_Diameter_Of_A_Tree {//树的直径
	chain_forward_star<> C;
	int dis[N];//到u点的距离
	int max_dis;
	int p;//最远点储存在p
	void dfs(int u, int f) {//当前点, 父亲
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v, w = C.e[i].w;
			if(v == f) continue;
			dis[v] = dis[u] + w;
			if(dis[v] > max_dis)
			{
				max_dis = dis[v];
				p = v;
			}
			dfs(v, u);
		}
	}
	void find_diameter() {//x, y是直径, max_dis为直径的长度
		dfs(1, 0);
		int x = p;
		max_dis = 0;
		dis[p] = 0;
		dfs(x, -1);
		int y = p;
	}
};
struct Divide_And_Conquer_Points {//点分治
	chain_forward_star<> C;
	int sum, root;//子树的大小, 子树的重心
	int dis[N];//某个节点到其子树中节点的距离
	int ask[1010], ans[1010];
	int dp[N], pd[100000010], size[N];
	//dp存储子树的最大不平衡度, pd标记某个距离是否被当前子树覆盖, size存储子树的大小
	int sta[N], top;
	int tmp[N];//临时存储距离值
	int vis[N];
	void get_focus(int u, int f) {//找到以u为根的子树的重心
		dp[u] = 0, size[u] = 1;
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v;
			if(v == f || vis[v]) continue;
			get_focus(v, u);
			size[u] += size[v];
			dp[u] = max(dp[u], size[v]);
		}
		dp[u] = max(dp[u], sum - size[u]);
		if(dp[u] < dp[root]) root = u;
	}
	void get_dis(int u, int f) {//递归计算u到其子树中所有节点的距离, 并将这些距离存储在sta栈中
		sta[++top] = dis[u];
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v, w = C.e[i].w;
			if(v == f || vis[v]) continue;
			dis[v] = dis[u] + w;
			get_dis(v, u);
		}
	}
	void calc(int u) {//遍历子树并计算距离, 检查是否存在满足条件的路径
		int c = 0;
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v, w = C.e[i].w;
			if(vis[v]) continue;
			top = 0, dis[v] = w, get_dis(v, u);
			for(int j = top ; j >= 1; --j)
				for(int k = 1; k <= m; ++k)
					if(ask[k] >= sta[j])
						ans[k] |= pd[ask[k] - sta[j]];
			for(int j = top ; j >= 1; --j)
				tmp[++c] = sta[j], pd[sta[j]] = 1;
		}
		for(int i = 1; i <= c; i++)
			pd[tmp[i]] = 0;
	}
	void solve(int u) {//以u为根的子树, 遍历所有未访问的子树
		vis[u] = pd[0] = 1;
		calc(u);
		for(int i = C.head[u]; i != -1; i = C.e[i].nxt)
		{
			int v = C.e[i].v;
			if(vis[v]) continue;
			dp[0] = INT_MAX, sum = size[v], root = 0;
			get_focus(v, 0), solve(root);
		}
	}
	void work() {
		cin >> n >> m;
		dp[0] = sum = n;
		for(int i = 1, u, v, w; i < n; ++i)
		{
			cin >> u >> v >> w;
			C.add_edge(u, v, w);
			C.add_edge(v, u, w);
		}
		for(int i = 1; i <= m; ++i)
			cin >> ask[i];
		get_focus(1, 0), solve(root);
		for(int i = 1; i <= m; ++i)
			cout << (ans[i] ? "yes\n" : "no\n");
	}
};
struct digitDP {//数位dp
	int a[30];//拆位数组
	int dp[60][60];//记忆化数组,dp[pos]定义为在没有限制没有前导零的情况, 从pos位开始填的答案
	//状态数随题目条件改变, 一般不止一维, 记得初始化为-1
	//pos表示还有几位要填
	//limit表示是否有最高位限制
	//lead表示是否填的数全是前导0, 这里0也会被判成前导0, 不过一般不影响结果
	//st是与题目相关的状态, 数量和名字都依据题目变化
	int dfs(int pos, int st, bool limit, bool lead) {
		if(pos == 0) return 1;//递归到底层, 满足要求就返回1
		if(!limit && !lead && dp[pos][st] != -1)
			return dp[pos][st];//如果发现没有限制, 不全是0且状态搜过则直接返回
		int up = limit ? a[pos] : base - 1;//当前位最高能填多少
		int res = 0;
		for(int i = 0; i <= up; ++i)//一些与题目要求去判断
			res += dfs(pos - 1, st, limit && (i == up), lead && (i == 0));
		return (!limit && !lead) ? dp[pos][st] = res : res;//如果发现没有限制, 不全是0, 则加入记忆化数组
	}
	int calc(int x) {
		if(x == 0) return 1;//特判0
		int len = 0;
		while(x) a[++len] = x % base, x /= base;
		return dfs(len, 0, true, true);
	}
};
class Monotonic_queue {//区间最小值单调队列
  public:
	int k;
	struct node {
		int id, val;
	};
  private:
	node q[N];
	int head, tail;
  public:
	Monotonic_queue(int k_): k(k_), head(1), tail(0) {}
	node front() {
		return q[head];
	}
	node back() {
		return q[tail];
	}
	void push_back(int id, int x) {
		while(head < tail && id - k > q[head].id)
			++head;
		while(head < tail && x <= q[tail].val)
			--tail;
		q[++tail] = {id, x};
	}
};
void merge_sort(int a[], int l, int r) {
	if(l >= r) return;
	int mid = (l + r) >> 1;
	merge_sort(a, l, mid);
	merge_sort(a, mid + 1, r);
	int i = l, j = mid + 1, k = l, tmp[N];
	while(i <= mid && j <= r)
		if(a[i] <= a[j]) tmp[k++] = a[i++];
		else tmp[k++] = a[j++];
	while(i <= mid)
		tmp[k++] = a[i++];
	while(j <= r)
		tmp[k++] = a[j++];
	for(int i = l; i <= r; ++i)
		a[i] = tmp[i]; 
}
//优化, 精简, 改进, 模板化, 改写为class
signed main() {
//	freopen(".in", "r", stdin);
//	freopen(".out", "w", stdout);
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	system("taskkill /f /t /im studentmain.exe");
	return 0;
}

标签:return,val,int,void,const,模板,dis
From: https://www.cnblogs.com/Rich1/p/18379495

相关文章

  • 自适应seo高仿草民电影网源码 苹果cmsv10模板
    自适应seo高仿草民电影网源码 苹果cmsv10模板源码介绍自适应SEO高仿草民电影网源码是一款基于苹果CMSv10开发的模板,旨在为用户提供一个高度仿真的草民电影网站体验。该模板不仅在视觉设计上模仿了草民电影网的布局和风格,还特别优化了搜索引擎优化(SEO)功能,以提高网站在搜索引......
  • 影视网站模板源码-响应式网页模板-带后台自适应整站源码
    影视网站模板源码-响应式网页模板-带后台自适应整站源码影视网站模板源码源码介绍本源码是一个响应式影视网站模板,适用于搭建电影、电视剧、动漫等视频内容的在线观看平台。模板采用HTML5、CSS3和JavaScript开发,支持自适应布局,能够在不同设备上提供良好的用户体验。后台管理......
  • 快看过来,毕业设计开题报告万能模板!
    我们给出了一个通用的开题报告模版,同时也填充了内容;大家可以自行根据自己的课题修改xxx学院毕业设计(论文)开题报告课题背景及意义随着高校教学体制和教育方式的改革与发展,高校校园建设面临了新的要求和挑战。大学校园交通系统规划与建设作为校区规划中不可缺少的一部分[1]......
  • 马克斯CMS4.0原创电影模板-自动采集-简洁蓝色模板-带手机wap模板-特色功能一应俱全202
    马克斯CMS4.0原创电影模板-自动采集-简洁蓝色模板-带手机wap模板-特色功能一应俱全2024电影模板马克斯CMS4.0原创电影模板源码介绍马克斯CMS4.0是一款专为电影网站设计的内容管理系统,提供了丰富的功能和灵活的定制选项。该系统支持自动采集功能,能够自动从互联网上抓取最......
  • 【生日视频制作】夜景摩天轮霓虹灯烟花AE模板修改文字软件生成器教程特效素材【AE模板
    摩天轮霓虹灯烟花生日视频制作教程AE模板改文字软件生成器素材怎么如何做的【生日视频制作】夜景摩天轮霓虹灯烟花AE模板修改文字软件生成器教程特效素材【AE模板】生日视频制作步骤:安装AE软件下载AE模板把AE模板导入AE软件修改图片或文字渲染出视频......
  • ZBlog首页与列表页相关模板
    页面公共模板文件模板文件说明header.php公共头部文件footer.php公共尾部文件首页与列表页相关模板模板文件说明index.php首页及列表页主模板文件post-multi.php摘要文章模板post-istop.php置顶文章模板pagebar.php页码模板日志/独......
  • Axure优质数据可视化大屏模板+图表组件+科技感元件
    Axure优质数据可视化大屏模板+图表组件+科技感元件Axure精心构建的数据可视化解决方案,震撼发布!我们汇集了110套顶尖大屏可视化模板,覆盖从基础监控到复杂分析的全场景需求,每套模板均经过精心设计,旨在为您的数据展示增添无限可能。此外,还配备了超过200种图表组件,包括交互式......
  • 【生日视频制作】富士山烟花霓虹灯AE模板修改文字软件生成器教程特效素材【AE模板】
    富士山烟花霓虹灯生日视频制作教程AE模板改文字软件生成器素材怎么如何做的【生日视频制作】富士山烟花霓虹灯AE模板修改文字软件生成器教程特效素材【AE模板】生日视频制作步骤:安装AE软件下载AE模板把AE模板导入AE软件修改图片或文字渲染出视频......
  • 【Flask系列】Jinja2模板引擎:Flask中的动态HTML渲染
    原创代码工匠坊007在Flask中,Jinja2是默认的模板引擎,它用于渲染HTML页面。你可以使用Jinja2来传递变量、执行循环和条件判断等操作。以下是一个简单的Flask应用示例,展示了如何在Flask中设置和使用Jinja2模板。首先,确保你已经安装了Flask。如果没有安装,可以通......
  • 履历表模板(精选6篇)
    履历表是求职过程中的重要一环,一份出色的履历表能够让大家在众多求职者中脱颖而出,以下小编整理的6篇履历表模板参考,同时,幻主简历网还提供精美简历模板下载和简历在线制作工具,欢迎大家阅读收藏。履历表模板1:求职意向求职类型:全职&nbsp;&nbsp;&nbsp;意向岗位:网络管理员&nbsp......