首页 > 其他分享 >时序预测|基于贝叶斯BO-卷积-双向门控单元-注意力机制的单变量时间序列预测模型BO-CNN-BiGRU-Attention

时序预测|基于贝叶斯BO-卷积-双向门控单元-注意力机制的单变量时间序列预测模型BO-CNN-BiGRU-Attention

时间:2024-08-21 08:54:17浏览次数:15  
标签:Attention BO 贝叶斯 序列 BiGRU CNN

时序预测|基于贝叶斯BO-卷积-双向门控单元-注意力机制的单变量时间序列预测模型BO-CNN-BiGRU-Attention

文章目录


前言

时序预测|基于贝叶斯BO-卷积-双向门控单元-注意力机制的单变量时间序列预测模型BO-CNN-BiGRU-Attention

matlab版本要求2023a以上

基于贝叶斯BO-卷积-双向门控单元-注意力机制的单变量时间序列预测

本文提出了一种基于贝叶斯BO-卷积-双向门控单元-注意力机制的单变量时间序列预测方法,使用BO算法来优化CNN和BiGRU网络结构的超参数,同时添加了注意力机制提高模型的预测性能。为了提高代码的可读性和可维护性。该方法在多个公共数据集上进行了实验,结果表明该方法在预测单变量时间序列方面具有显著的优势,且与当前最先进的方法相比,能够显著提高预测性能。

一、BO-CNN-BiGRU-Attention模型

BO-CNN-BiGRU-Attention模型结合了贝叶斯优化、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和自注意力机制(Attention),每个组件在模型中的作用如下:

1. 贝叶斯优化(BO)

贝叶斯优化是一种用于优化超参数的技术。它通过建模目标函数的概率分布,利用贝叶斯推断来指导搜索过程,选择最有可能提高模型性能的超参数组合。这有助于找到最优的模型配置,而不是依赖于网格搜索或随机搜索等传统方法。

流程

  • 选择目标函数:通常是模型的性能指标(如验证集上的准确率)。
  • 构建代理模型:通常使用高斯过程来近似目标函数。
  • 选择下一点:利用代理模型选择最可能带来性能提升的超参数组合。
  • 更新模型:用实际的目标函数值更新代理模型。
  • 迭代:重复上述步骤,直到找到最优的超参数组合。

2. 卷积神经网络(CNN)

CNN用于提取输入数据中的局部特征,特别适合处理图像和序列数据中的空间信息。在这个模型中,CNN的任务是从输入序列中提取高层次的特征表示。

流程

  • 卷积层:通过卷积操作提取局部特征。
  • 激活函数:如ReLU,引入非线性变换。
  • 池化层:减少特征图的尺寸,保留重要的特征信息。

3. 双向门控循环单元(BiGRU)

BiGRU是对标准GRU(门控循环单元)的扩展,它可以同时考虑序列中的前向和后向信息。这有助于捕捉序列中前后文的相关性,从而提高对序列数据的建模能力。

流程

  • 前向GRU:处理序列的正向信息。
  • 后向GRU:处理序列的反向信息。
  • 融合:将前向和后向的隐藏状态结合,以形成对序列更全面的表示。

4. 自注意力机制(Attention)

自注意力机制允许模型在处理输入序列时,动态地关注序列中的不同部分。它计算每个位置的表示与其他位置的关系,从而加权不同位置的重要性,生成上下文感知的表示。

流程

  • 计算注意力权重:使用查询、键和值矩阵计算注意力得分。
  • 加权求和:根据注意力权重对值进行加权求和,得到加权表示。
  • 应用:将加权表示传递到后续层。

综合流程

  1. 输入数据预处理:对输入数据进行必要的预处理和特征提取。
  2. 贝叶斯优化:使用贝叶斯优化调整CNN、BiGRU和Attention机制的超参数,以获得最佳模型配置。
  3. 特征提取:使用CNN从输入序列中提取特征。
  4. 序列建模:将CNN提取的特征输入到BiGRU中,以建模序列的前向和后向信息。
  5. 上下文建模:通过自注意力机制对BiGRU输出进行加权和调整,生成最终的上下文感知表示。
  6. 输出:根据模型任务(如分类、回归等)生成最终预测结果。

通过这种方式,BO-CNN-BiGRU-Attention模型将贝叶斯优化的超参数调优能力与CNN、BiGRU和自注意力机制的特征提取和上下文建模能力结合起来,以提高模型的性能和准确性。

二、实验结果

BO-CNN-BiGRU-Attention实验结果
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、核心代码


%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

四、代码获取

私信即可 79米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

标签:Attention,BO,贝叶斯,序列,BiGRU,CNN
From: https://blog.csdn.net/2401_86241083/article/details/141365541

相关文章

  • 利用Spring Boot实现微服务的配置中心
    利用SpringBoot实现微服务的配置中心大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在微服务架构中,随着服务数量的增加,集中管理配置信息变得尤为重要。SpringCloudConfig提供了一个配置服务器,用于集中管理微服务的配置信息。本文将介绍如何利用Sp......
  • 构建Spring Boot应用的性能监控与优化
    构建SpringBoot应用的性能监控与优化大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!性能监控与优化是确保SpringBoot应用高效运行的关键环节。SpringBoot提供了多种机制来监控应用性能,并进行优化。本文将介绍如何构建SpringBoot应用的性能监控与......
  • Spring Boot集成Spring Cloud Netflix组件
    SpringBoot集成SpringCloudNetflix组件大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!SpringCloud是一个基于SpringBoot的微服务框架,它集成了多种微服务解决方案,包括服务发现、配置管理、消息总线等。Netflix组件是SpringCloud中的重要组成部......
  • 利用Spring Boot实现微服务的链路追踪
    利用SpringBoot实现微服务的链路追踪大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在微服务架构中,一个请求可能会经过多个服务节点,链路追踪成为监控和诊断问题的关键技术。SpringBoot结合SpringCloudSleuth和Zipkin或其他追踪系统,可以有效地实......
  • 利用Spring Boot的RestTemplate进行REST客户端开发
    利用SpringBoot的RestTemplate进行REST客户端开发大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在微服务架构中,服务之间的通信通常通过RESTAPI来实现。SpringBoot提供了RestTemplate,这是一个用于同步客户端REST请求的类。本文将介绍如何使用Spri......
  • 利用Spring Boot的Spring Security实现细粒度访问控制
    利用SpringBoot的SpringSecurity实现细粒度访问控制大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!SpringSecurity是Spring提供的一个功能强大且高度可定制的Java安全框架,用于保护基于Spring的应用程序。在SpringBoot中集成SpringSecurity可以......
  • Spring Boot集成Spring Data JPA进行数据持久化
    SpringBoot集成SpringDataJPA进行数据持久化大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!SpringDataJPA是Spring提供的一个用于简化数据库操作的数据访问和持久化框架。它提供了一种声明式的数据访问层,可以大幅减少数据访问层代码的编写。......
  • Ros2 Moveit2 - Robot Model and Robot State
    RobotModelandRobotState 在本节中,我们将向您介绍用于在MoveIt中使用运动学的C++API。RobotModel和RobotState类RobotModel 和 RobotState 类是提供对机器人运动学访问权限的核心类。RobotModel 类包含所有链接和关节之间的关系,包括从URDF加载的关节限制属......
  • springboot自动配置原理-面试题
    网络上看很多文章并没什么用,重点没说到,不知道从那里入手讲,刷到的直接按照下面这个,背出来就行了1、当启动springboot应用程序的时候,会先创建SpringApplication的对象,在对象的构造方法中会进行某些参数的初始化工作,最主要的是判断当前应用程序的类型以及初始化器和监听器,在这个......
  • Postman中Body添加注释后请求报错问题解决【保姆级教程!!!】
    本文介绍关于Postman中Body添加注释后请求报错问题解决方法如:请求返回下述报错操作失败!系统异常,JsonParseException:Unexpectedcharacter(‘/’(code47)):maybea(non-standard)comment?(notrecognizedasonesinceFeature‘ALLOW_COMMENTS’notenabled......