首页 > 其他分享 >要想赚钱,AI模型该大该小?贾扬清:论AI模型经济学的技巧

要想赚钱,AI模型该大该小?贾扬清:论AI模型经济学的技巧

时间:2024-08-20 17:24:00浏览次数:14  
标签:AI 模型 token 贾扬 商业价值 CNN

最近的AI社区,关于模型规模的讨论有些活跃。

一方面,此前在大模型开发奉为“圣经”的Scaling Law,似乎正在褪去光环。去年大家还在猜测GPT-5的规模“可能会大到想不到”,现在这种讨论几乎绝迹。大神Andrej Karpathy,则是在感慨大模型规模正在“倒退”。

另一方面,近期市场上性能优秀的小型模型层出不穷,参数规模、任务处理、反应速度、安全性能,各公司在不同方面卷了又卷。

究竟是往大做探索极限,还是往小做迎合市场?

这最终汇总成一个问题:在这样模型快速更迭的市场中,要怎么才能把LLM模型的商业价值最大化?

唯快不破的模型业态

最近发起讨论的是X.ai创始成员之一的Toby Pohlen。他认为如果模型以指数级速度改进,那么训练模型的价值也会以指数级速度折旧。这也导致人们需要赶在模型更迭前就迅速采取行动获取商业价值,一旦模型产生更新,上一代模型就基本一文不值了。

Toby的这番言论深得老板Elon Musk之心,大笔一挥打了一个“100分”。

贾扬清也参与到了这场讨论中来,他用感恩节火鸡做了一个有趣的比喻。他提出,售卖模型就像是感恩节火鸡促销,必须在感恩节前夕抓紧时间售卖,避免在感恩节到来后的贬值。新模型的技术更新就是一个又一个感恩节,只有销售得更快才能赚到更多的利润。

(emmm...如果对火鸡不好了解,换成中秋节前抢月饼的故事大家或许应该容易理解一些?)

评论区也有不少人表达了对此观点的赞同。

有人说只要不断地开发新产品和迭代新模型,就能从中持续获得商业价值。

还有人说,模型改进的频率将直接决定模型本身的商业价值。

但是,模型的商业价值由什么决定,又该如何实现?

模型发展在走CNN老路吗?

模型必须做小,用起来才顺手。

比起大型模型,小型模型成本低应用便利,更能收获商业市场的青睐。贾扬清就发现,行业趋势在于研发和使用尺寸更小性能强大的模型,人们也更愿意把规模参数在7B-70B之间的中小型模型作为商业使用的选择。

作为前大模型时代的亲历者,贾扬清在当下LLM模型市场上嗅到了熟悉的味道,先变大再变小变高效,这和CNN时期的模型发展简直一模一样。

贾扬清还对CNN的发展历程做了一个简单的介绍。

贾扬清还介绍了CNN的一个有趣的应用,Google的MobileNet(2017),占用空间小性能优越,还具有出色的特征嵌入泛化。

最后,贾扬清引用了Ghimire 等人在《高效卷积神经网络和硬件加速调查》里的一张图:

他还进一步发问,LLM模型未来会遵循和CNN一样的发展趋势吗?

大型模型的盈利思考

不过贾扬清也补充道,虽然行业趋势是模型小型化,但并不意味着号召大家放弃尺寸更大的模型。

但这随之而来的是另一个问题:大型模型的成本会更高。

此前也有人提出质疑,对大型模型服务商的运营成本和营运收益做了简单的计算,每天8张H100显卡运营节点的成本约为1000美元,每天可以提供2600万token的服务,但按Llama 405B每一百万token 3美元的价格,怎么算都是亏本的,无法盈利的大型模型不会被市场抛弃吗?

贾扬清表示,哎你说这个我就不困了,我熟我来说:)

贾扬清认为,虽然每个请求大约每秒输出30个token,但通过批量处理(同时处理多个请求)可以显著提高总吞吐量,可以达到比单个请求高出10倍或更高的吞吐量。

同时他还指出,每秒大约30个token指的是输出token,大模型对于输入token的处理速度更快,这也增加了处理的总token数,大模型通常对输入和输出分别计费,也正是这个道理。

在后续的另一个回复,贾扬清做了更详细的量化计算:

收入798.34美元,成本670.08美元,因此通过整合多种技术方法,在合理流量下(像Lepton这样的大模型技术服务商)是可能盈利的。

当然,这只是一个简单的推算,实际的盈利还会受到流量稳定性、计费方式、按需使用GPU的机器成本控制、解码、提示缓存以及其他因素的影响。

但某种程度上说,类似深度学习时代对CNN的不断优化,在大模型时代,也需要技术人员对于模型进行种种优化,来保证性能提高的同时不断降低成本,这正是贾扬清看好的创业路线。

One  more thing

我们不妨再多讨论一下,对于贾扬清这样的AI Infra创业者,模型大小的潮流变化对他的商业模式有什么影响?

这个问题,要分不同情况分析。

如果模型参数量越大,提供模型服务的门槛越高(参考Llama 405B),其客单价自然也就越大;

另一方面,由于很多小模型实际是在大模型的基础上蒸馏而得到,模型小了,所需的计算资源并没有等幅度减少;

由于较小的模型更容易部署在不同的设备和平台上,这可能会带来应用场景的增加,虽然客单价可能降低,但在需求数量上的增加反而可能使得总收入增加;

对于贾扬清来说,META的开源路线使得贾扬清的服务对象扩大,因此开源对他来说更有利。

看来不管未来模型规模怎么不变化,贾扬清都有机会凭借技术升级稳坐钓鱼台。这有点像之前的中国股市,不管什么消息,都是“利好茅台”啊。

这恐怕就是贾扬清最近在推特上为什么这么活跃发表看法的原因?你看好贾扬清这种AI Infra的创业路线吗?

标签:AI,模型,token,贾扬,商业价值,CNN
From: https://blog.csdn.net/2401_86755185/article/details/141267002

相关文章

  • 【WCET 户厕】2nd Qingbai Cup
    T1考虑二分,然后怎么check。我们随便选一个点开始BFS地移动,如果以它为左上角的正方形可以覆盖整个局面中的所有空格子,那么整个边长就是可行的。容易证明随便选一个点开始是正确的。T2抽象题。看到数据范围容易有一个状压状物,然而\(2^n\)怎么都去不掉。根据某年NOI或W......
  • 《给所有人的生成式 AI 课》学习笔记(二)
    前言本文是吴恩达(AndrewNg)的视频课程《GenerativeAIforEveryone》(给所有人的生成式AI课)的学习笔记。由于原课程为全英文视频课程(时长约3个小时),且国内访问较慢,阅读本文可快速学习课程内容。课程介绍本课程帮助大家了解生成式人工智能的工作原理,以及如何在生活和工......
  • 科普初步了解大模型
    一、大模型的简单认知(一)官方定义大模型(LargeModels)并没有一个官方的统一定义,因为它通常是一个相对的概念,其大小会根据时间、技术和领域的发展而变化。大模型通常指的是深度学习中具有大量参数和计算资源需求的神经网络模型。这些模型在不同的上下文中可能有不同的大小阈......
  • 大语言模型LLM
    目录LLM训练方法LLM高效训练/省内存LLM与知识图谱(KGs)结合LLM开源项目LLM训练集及评估一、语言模型的发展语言模型(LanguageModel,LM)目标是建模自然语言的概率分布,具体目标是构建词序列w1,w2,…,wm的概率分布,即计算给定的词序列作为一个句子出现可能的大小P(w1w2…wm)。但......
  • 小白也能看懂,大模型的6个评估指标!
    近年来,随着深度学习技术的飞速发展,大型神经网络模型如BERT、GPT-3等已经成为自然语言处理、计算机视觉、语音识别等领域的重要工具。这些模型之所以称为"大型",是因为它们通常包含数十亿甚至数千亿的参数,比以往的模型要庞大得多。然而,模型的规模庞大并不总是意味着性能更好,因......
  • 一个AI原生数据应用数据库开发框架,专为数据3.0时代设计,支持私域问答、多数据源交互、
    前言在数字化转型的浪潮中,企业在数据处理和分析方面面临着巨大的挑战。传统软件往往存在复杂的数据库交互、低效的数据整合流程以及缺乏智能化数据分析能力等痛点。这些问题不仅拖慢了企业决策的步伐,也限制了创新的发展。因此,急需一款能够简化数据库交互、智能化数据处理的软......
  • AquaCrop模型数据制备、优化方法、敏感性与气候变化影响分析及源码解析
    AquaCrop是由世界粮食及农业组织(FAO)开发的一个先进模型,旨在研究和优化农作物的水分生产效率。这个模型在全球范围内被广泛应用于农业水管理,特别是在制定农作物灌溉计划和应对水资源限制方面显示出其强大的实用性。AquaCrop不仅包含一个全面的数据库,还提供了用户友好的接口,使得......
  • 颜色模型及其转换
    学OpenCV================================================颜色模型之间可以互相转换 ================================================示例代码1#include<iostream>23#include<opencv2/opencv.hpp>4#include<opencv2/core/utils/logger.hpp>5......
  • 直击网络安全战场:DDoS攻击数据分析与机器学习模型的终极指南
    你还在为数据枯燥而发愁?不如让我们用机器学习来和DDoS攻击“打个招呼”!欢迎来到一场别开生面的数据科学冒险!你是否曾经面对一堆毫无生气的数据表格,感到头疼不已?是否在盯着屏幕苦苦寻找攻击模式时,觉得自己仿佛变成了一个被困在数据迷宫里的“网络侦探”?别担心!今天,我们要带你进......
  • Docker+Win11:显示Docker中的GUI,解决报错“[Open3D WARNING] GLFW Error: X11: Failed
        在本系列博文中,我将Pytorch部署在Win11为宿主的Docker中,并成功的调用GPU进行了训练。这为我提供了很多便利。    今天在进行3D相关的深度学习研究时我遇到了一些问题:[Open3DWARNING]GLFWError:X11:Failedtoopendisplay:0[Open3DWARNING]Faile......