首页 > 其他分享 >洛谷P1786

洛谷P1786

时间:2024-08-15 10:18:57浏览次数:15  
标签:p2 p1 return 职位 else 洛谷 排序 P1786

6.帮贡排序

题目链接:[P1786 帮贡排序 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)]()

题目背景

在 absi2011 的帮派里,死号偏多。现在 absi2011 和帮主等人联合决定,要清除一些死号,加进一些新号,同时还要鼓励帮贡多的人,对帮派进行一番休整。

题目描述

目前帮派内共最多有一位帮主,两位副帮主,两位护法,四位长老,七位堂主,二十五名精英,帮众若干。

现在 absi2011 要对帮派内几乎所有人的职位全部调整一番。他发现这是个很难的事情。于是要求你帮他调整。

他给你每个人的以下数据:

他的名字(长度不会超过 \(30\)),他的原来职位,他的帮贡,他的等级。

他要给帮贡最多的护法的职位,其次长老,以此类推。

可是,乐斗的显示并不按帮贡排序而按职位和等级排序。

他要你求出最后乐斗显示的列表(在他调整过职位后):职位第一关键字,等级第二关键字。

注意:absi2011 无权调整帮主、副帮主的职位,包括他自己的(这不是废话么..)

他按原来的顺序给你(所以,等级相同的,原来靠前的现在也要靠前,因为经验高低的原因,但此处为了简单点省去经验。)

输入格式

第一行一个正整数 \(n\),表示星月家园内帮友的人数。

下面 \(n\) 行每行两个字符串两个整数,表示每个人的名字、职位、帮贡、等级。

输出格式

一共输出 \(n\) 行,每行包括排序后乐斗显示的名字、职位、等级。

样例 #1

样例输入 #1

9
DrangonflyKang BangZhu 100000 66
RenZaiJiangHu FuBangZhu 80000 60
absi2011 FuBangZhu 90000 60
BingQiLingDeYanLei HuFa 89000 58
Lcey HuFa 30000 49
BangYou3 ZhangLao 1000 1
BangYou1 TangZhu 100 40
BangYou2 JingYing 40000 10
BangYou4 BangZhong 400 1

样例输出 #1

DrangonflyKang BangZhu 66
RenZaiJiangHu FuBangZhu 60
absi2011 FuBangZhu 60
BingQiLingDeYanLei HuFa 58
BangYou2 HuFa 10
Lcey ZhangLao 49
BangYou1 ZhangLao 40
BangYou3 ZhangLao 1
BangYou4 ZhangLao 1

提示

各种职位用汉语拼音代替。

如果职位剩 \(1\) 个,而有 \(2\) 个帮贡相同的人,则选择原来在前的现在当选此职位。

另:
帮派名号:星月家园

帮主尊号:Dragonfly Kang

帮派ID:2685023

帮派等级:4

帮派人数:101/110

帮派技能:

星月家园资料,欢迎各位豆油加入_

【数据范围】

对于 \(10\%\) 的数据,保证 \(n=3\)。

对于 \(40\%\) 的数据,保证各个人的帮贡均为 \(0\)。

对于 \(100\%\) 的数据,保证 \(3\leq n\leq 110\),各个名字长度\(\leq30\),\(0\leq\) 各个人的帮贡 \(\leq1000000000\),
\(1\leq\) 各个人等级 \(\leq 150\)。

保证职位必定为 \(\texttt{BangZhu}\),\(\texttt{FuBangZhu}\),\(\texttt{HuFa}\),\(\texttt{ZhangLao}\),\(\texttt{TangZhu}\),\(\texttt{JingYing}\),\(\texttt{BangZhong}\) 之中的一个

保证有一名帮主,保证有两名副帮主,保证有一名副帮主叫 absi2011

不保证一开始帮派里所有职位都是满人的,但排序后分配职务请先分配高级职位。例如原来设一名护法现在设两名。

保证名字不重复。

【题目来源】

fight.pet.qq.com

absi2011 授权题目

思路:

  • 这题我们首先捋清楚思路,我们首先得对帮派中的所有人先分配新的职位,然后根据新的职位,等级和编号进行重新排序后输出

对所有人分配新的职位:

  • 按照题目给出的条件,我们对所有人进行重新分配职位:帮主,副帮主不需要重新分配职位,但是对于下面的人,我们需要先看帮贡是否相同,不同的话就帮贡大的人排前面,否则比较序号,序号小的人排在前面,并且我们只需要从护法开始排序(因为我们数组是从下标1开始计数,所以说我们只需要从a+4------a+1+n排序即可)。

  • 定义结构体和结构体数组

struct people {
    //原先的职位,名字,和新职位
	string name, zhiwei,xzw;
    //帮贡一定得开long long
	long long banggong;
	long long  dengji;
	int num;
}a[125];
int n;
  • 按照帮贡来排序,帮贡相同时按序号排序
bool compare(people p1, people p2)
{
	if (p1.banggong != p2.banggong) return p1.banggong>p2.banggong;
	else return p1.num<p2.num;
}
  • 按照帮贡排序,并分配新的职位
	//排序,排护法及其后面的所有人
	sort(a + 4, a + 1 + n, compare);
	for (int i = 1; i <= n; i++) {
		if (i == 1) a[i].xzw = "BangZhu";
		else if (i >= 2 && i <= 3) a[i].xzw = "FuBangZhu";
		else if (i >= 4 && i <= 5) a[i].xzw = "HuFa";
		else if (i >= 6 && i <= 9) a[i].xzw = "ZhangLao";
		else if (i >= 10 && i <= 16) a[i].xzw = "TangZhu";
		else if (i >= 17 && i <= 41) a[i].xzw = "JingYing";
		else a[i].xzw = "BangZhong";
	}
  • 定义新的比较函数,用于排序输出位置的函数,但是,我们得知道,怎么去按照职位排序呢?————我们可以定义一个函数,职位高的就返回数字大的,比较它们返回的数字即可
//将职位转化为数字,方便根据职位来划分顺序,职位越大,数字越大
int change(string s)
{
	if (s == "BangZhu") return 6;
	else if (s == "FuBangZhu") return 5;
	else if (s == "HuFa") return 4;
	else if (s == "ZhangLao") return 3;
	else if (s == "TangZhu") return 2;
	else if (s == "JingYing") return 1;
	else return 0;
}

对新的所有人进行顺序上的排序

bool compare2(people p1, people p2)
{
	if (change(p1.xzw) != change(p2.xzw)) return change(p1.xzw) > change(p2.xzw);
	else {
		if (p1.dengji != p2.dengji) return p1.dengji > p2.dengji;
		else {
			return p1.num < p2.num;
		}
	}
}

最终代码

#include<iostream>
#include<algorithm>
using namespace std;
struct people {
	string name, zhiwei, xzw;
	long long banggong;
	long long  dengji;
	int num;
}a[125];
int n;
bool compare(people p1, people p2)
{
	if (p1.banggong == p2.banggong) return p1.num < p2.num;
	else return p1.banggong > p2.banggong;
}
//将职位转化为数字,方便根据职位来划分顺序,职位越大,数字越大
int change(string s)
{
	if (s == "BangZhu") return 6;
	else if (s == "FuBangZhu") return 5;
	else if (s == "HuFa") return 4;
	else if (s == "ZhangLao") return 3;
	else if (s == "TangZhu") return 2;
	else if (s == "JingYing") return 1;
	else return 0;
}

bool compare2(people p1, people p2)
{
	if (change(p1.xzw) != change(p2.xzw)) return change(p1.xzw) > change(p2.xzw);
	else {
		if (p1.dengji != p2.dengji) return p1.dengji > p2.dengji;
		else {
			return p1.num < p2.num;
		}
	}
}
int main()
{
	cin >> n;
	for (int i = 1; i <= n; i++) {
		cin >> a[i].name >> a[i].zhiwei >> a[i].banggong >> a[i].dengji;
		a[i].num = i;
	}
	//排序,排护法及其后面的所有人
	sort(a + 4, a + 1 + n, compare);
	for (int i = 1; i <= n; i++) {
		if (i == 1) a[i].xzw = "BangZhu";
		else if (i >= 2 && i <= 3) a[i].xzw = "FuBangZhu";
		else if (i >= 4 && i <= 5) a[i].xzw = "HuFa";
		else if (i >= 6 && i <= 9) a[i].xzw = "ZhangLao";
		else if (i >= 10 && i <= 16) a[i].xzw = "TangZhu";
		else if (i >= 17 && i <= 41) a[i].xzw = "JingYing";
		else a[i].xzw = "BangZhong";
	}
	//再排一次序
	sort(a + 1, a + 1 + n, compare2);
	for (int i = 1; i <= n; i++) {
		cout << a[i].name << " " << a[i].xzw << " " << a[i].dengji << endl;
	}
	return 0;
}

标签:p2,p1,return,职位,else,洛谷,排序,P1786
From: https://www.cnblogs.com/Tomorrowland/p/18360352

相关文章

  • 洛谷P2789 直线交点数 题解
    解题思路考虑将直线分组,每组内直线互相平行,任意两组直线间交点数量等于两组内直线数量乘积。分组操作使用dfs,求出交点数量后加入set去重,输出set大小。时间复杂度O(2NN2)有点鬼畜但是可以通过。实现#include<cstdio>#include<unordered_set>inta[30];std::unordered_set......
  • 洛谷题单指南-常见优化技巧-P1115 最大子段和
    原题链接:https://www.luogu.com.cn/problem/P1115题意解读:最大连续子序列的和。解题思路:DP的做法可参考:https://www.cnblogs.com/jcwy/p/18144124也可以采用双指针来枚举:i从1开始,j=i用j来枚举连续序列,如果已有序列和+下一个a[j]>=下一个a[j],那个j一直++,累加序列和如果出......
  • 可持久化线段————主席树(洛谷p3834)
    洛谷P3834可持久化线段树2问题描述:给定n各整数构成的序列,求指定区间[L,R]内的第k小值(求升序排序后从左往右数第k个整数的数值)输入:第一行输入两个整数n,m,分别代表序列长度n和对序列的m次查询;第二行输入n个整数,表示序列的n个整数;之后的m行,每行输入3个整数L,R,k,表示查询......
  • 洛谷P9573 「TAOI-2」核心共振 题解
    ProblemSolution很容易发现如果\(p\ge2n\)时「共振」的次数一定为\(0\),所以这时随便怎么输出都行。考虑一般情况。首先为\(p\)的倍数的数肯定无法与其他不是\(p\)的倍数的数组,所以先输出是\(p\)的倍数的数。然后可以想到只需要枚举一个\(i\)表示余数,发现只需要枚......
  • 洛谷P7767 DNA 题解
    ProblemSolution考虑DP。设\(dp_{i,0}\)表示前\(i\)个字符全为A的最小操作次数,\(dp_{i,1}\)表示前\(i\)个数全为B的最小操作次数。考虑转移。若当前位为A则\(dp_{i,0}=\min(dp_{i-1,0},dp_{i-1,1}+1)\),\(dp_{i,1}=\min(dp_{i-1,0}+1,dp_{i-1,1}+1)\);若当前位......
  • 洛谷P9539 「AWOI Round 2 B」树学 题解
    ProblemSolution题目要求字典序最小,所以一定要尽可能多的\(a\),而且要尽可能靠前。所以我们只需修改不是\(a\)的位置为\(a\)即可。但若\(a\)的个数比\(r\)大,我们就需要将多余的\(a\)手动改为\(b\)并在接下来的修改中保持不变,所以定义一个\(vis_i\)表示是否一定......
  • 洛谷P9541 「AWOI Round 2 D」数字三角形 题解
    ProblemSolution通过题目意思发现,有三种情况:没有旋转的初始情况旋转一次的情况旋转两次的情况我们考虑怎么处理初始情况,其他情况同理。首先,我们发现经过数和最大一定可以保证是每行的最大值的总和,所以只要计算最小的消耗就可以了。考虑DP,设\(dp_{i,j}\)表示从......
  • 洛谷-P1250 种树
    Abstract传送门Idea显然是一个差分约束系统。不妨用dist[i]表示前i个位置种的树的数目,那么,容易得出下列方程:dist[i]>=dist[i-1]dist[i]-dist[i-1]<=1(每个位置至多能种一颗树)题目要求b到e之间至少种t棵树,其数学形式就是:dist[b]-dist[e-1]>=t依据......
  • 洛谷P2758编辑距离超详注解
    注:本蒟蒻第一篇题解本文亦发表于洛谷博客题目跳转题目大意用最少的字符操作次数,将字符串A转换为字符串B。字符操作为:1.删除一个字符;2.插入一个字符;3.将一个字符改为另一个字符。代码思路本题很明显用的是DP1.赋值将dp数组的值赋值到最大2.特殊赋值对......
  • 洛谷美化教程
    洛谷那界面太丑了,给大家推荐美化教程edge用户下载篡改猴。Google自行摸索。。。下载UP给的扩展包密码CSDN私聊edge访问:thisgoogle访问:this注意:edge用户请打开拖拽下载的文件进入安装扩展edge和Google会提示安装篡改猴生效图片:背景颜色可打开篡改猴自行修改......