首页 > 其他分享 >使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)

使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)

时间:2024-08-11 20:53:35浏览次数:16  
标签:SiliconCloud GraphRag 为例 ## max global llm override settings

使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)

使用OpenAI模型体验GraphRag——以《边城》为例

在使用SiliconCloud之前,先使用OpenAI的模型看看GraphRag的效果。

GraphRAG是一种基于AI的内容理解和搜索能力,利用LLMs,解析数据以创建知识图谱,并对用户提供的私有数据集回答用户问题的方法。

GitHub地址:https://github.com/microsoft/graphrag

官网:https://microsoft.github.io/graphrag

现在正式开始体验GraphRag吧。

温馨提示

GraphRag Token的消费量比较大,刚开始体验可以不按照官方的配置,改用字数少一点的文本以及换成gpt-4o-mini模型。

以沈从文的《边城》为例。

创建一个Python虚拟环境,安装GraphRag:

pip install graphrag

安装好了之后:

mkdir biancheng
mkdir input

就是创建两个文件夹,也可以手动操作,然后将《边城》txt文件放到input文件夹下,如下所示:

image-20240810091951237

开始初始化:

python -m graphrag.index --init --root ./biancheng

完成后,会出现一些文件,如下所示:

image-20240810092251562

在.env文件中输入OpenAI Api Key,如下所示:

image-20240810092403747

在settings.yaml文件中做一些配置,在这里我的配置如下:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: gpt-4o-mini
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  # api_base: https://<instance>.openai.azure.com
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: text-embedding-3-small
    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

为了节约成本,把模型换成了gpt-4o-mini:

image-20240810092653575

为了后面在Gephi等软件中查看graphml文件,这里改成了true:

image-20240810093039475

这样就配置好了,现在开始索引化:

python -m graphrag.index --root ./biancheng

索引化完成截图:

img

现在可以查看一下生成的节点和边:

image-20240810093551574

image-20240810093633997

现在就可以开始查询了。

先来全局查询:

python -m graphrag.query --root ./biancheng --method global "这篇小说讲了什么主题?"

image-20240810093814596

再来局部查询:

python -m graphrag.query --root ./biancheng --method local "翠翠在白鸡关发生了什么?" 

image-20240810093934417

《边城》的字数大约在5万到6万字之间,查看成本:

image-20240810094208222

只花了0.18美元,gpt-4o-mini性价比还是很高的。

使用SiliconCloud尝试GraphRag——以《三国演义》为例

虽然使用OpenAI的模型效果很好,但是在国内使用OpenAI会有一些限制,可能很多人还没有OpenAI Api Key,而且可能暂时也没法弄到,因此可以选择SiliconCloud做替代,SiliconCloud同时提供了兼容OpenAI格式的对话模型与嵌入模型,并有多款先进开源大模型可用,刚注册SiliconCloud会送一些额度,感兴趣就可以马上上手尝试。

在使用SiliconCloud尝试GraphRag时,为了快速把流程跑通,尝试换一个小一点的文本,先以《嫦娥奔月》的故事为例,进行说明。

步骤跟之前的步骤一样,就是在配置的时候,要改一些地方。

首先将Api Key改成SiliconCloud的Api Key:

image-20240810095355942

settings中需要更改的地方。

首先是对话模型部分:

image-20240810095744402

这里我选用的是meta-llama/Meta-Llama-3.1-70B-Instruct模型,关于模型名字怎么写,参考SiliconCloud的文档,文档地址:https://docs.siliconflow.cn/docs/getting-started

image-20240810100146593

接下来是嵌入模型部分:

image-20240810100316696

这里使用的嵌入模型是BAAI/bge-large-en-v1.5,使用BAAI/bge-large-zh-v1.5我这里会出错,大家也可以试一下,目前不知道什么原因。

嵌入模型名称该怎么写也是见文档:

image-20240810100757105

开始索引化:

image-20240810100903227

查看节点:

image-20240810101324223

查看边:

image-20240810101359837

全局提问:

python -m graphrag.query --root ./change1 --method global "这篇故事讲了什么主题?"

image-20240810100944628

局部提问:

python -m graphrag.query --root ./change1 --method local "嫦娥送了什么礼物给天帝?"

image-20240810101052387

现在把流程跑通了,可以尝试《三国演义》了!!

使用同样的设置,三国字数比较多,比较慢,耐心等待:

img

流程完成:

image-20240810101939345

查看节点:

image-20240810102239596

查看边:

image-20240810102601774

全局提问:

python -m graphrag.query --root ./sanguo --method global "三国讲了什么故事?"

image-20240810102020083

局部提问:

python -m graphrag.query --root ./sanguo --method local "赤壁之战是怎么打败曹操的?"

image-20240810102106817

使用本地模型尝试GraphRag

本地尝试GraphRag可以使用Ollama的对话模型,由于Ollama的嵌入模型没有兼容OpenAI的格式,所以嵌入模型可以使用LM Studio。

配置:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: llama3.1:70b
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: http://localhost:11434/v1
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.Q2_K.gguf
    api_base: http://localhost:1234/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

理论上跑的起来,但是我的电脑配置不行,跑不了稍微大一点的模型,没法实测。

混合使用

可以接入在线的对话模型Api,嵌入模型用本地的,但是SiliconCloud目前嵌入模型免费使用,也可以直接使用SiliconCloud的嵌入模型。

为了测试有哪些模型能把GraphRag流程跑通,但有些厂商只提供对话模型没有提供嵌入模型或者提供的嵌入模型也不兼容OpenAI格式该怎么办?

可以使用两个Key,一个Key是SiliconCloud用于使用嵌入模型,一个Key是其它厂商的,用于使用对话模型。

比如可以这样设置:

image-20240810103933743

配置文件可以这样写:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${Other_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: glm-4-air 
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: https://open.bigmodel.cn/api/paas/v4
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: BAAI/bge-large-en-v1.5
    api_base: https://api.siliconflow.cn/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

我尝试了多个大模型,经过我这个简单的测试,能把GraphRag流程跑通的(只是跑通,回答效果不一定好)的有如下这些:

image-20240810104317340

image-20240810104349626

温馨提示

GraphRag Token消耗量很大,请注意额度!!

对于一个两千多字的文本,一次GraphRag基本上就要耗费十多万的Token:

image-20240810105125183

image-20240810105429469

参考

1、https://microsoft.github.io/graphrag/posts/get_started/

2、https://siliconflow.cn/zh-cn/siliconcloud

3、https://github.com/microsoft/graphrag/discussions/321

4、https://github.com/microsoft/graphrag/issues/374

5、https://www.youtube.com/watch?v=BLyGDTNdad0

标签:SiliconCloud,GraphRag,为例,##,max,global,llm,override,settings
From: https://blog.csdn.net/mingupup/article/details/141088694

相关文章

  • 以DenseNet为例进行AI算法部署集成
    以DenseNet为例进行AI算法部署集成AI越用越广,但落地使用的时候各种bug多多,这里提供一些离线集成的导引方便大家学习,后面也会尝试更新一些webapi的集成方式,请期待后续的博客简单性能表格下列表格为一些简单的部署数据搜集,通过部署器进行离线集成,可以看到可以大大降低资源......
  • 使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)
    使用OpenAI模型体验GraphRag——以《边城》为例在使用SiliconCloud之前,先使用OpenAI的模型看看GraphRag的效果。GraphRAG是一种基于AI的内容理解和搜索能力,利用LLMs,解析数据以创建知识图谱,并对用户提供的私有数据集回答用户问题的方法。GitHub地址:https://github.com/microsoft......
  • 『SD』Stable Diffusion WebUI 安装插件(以汉化为例)
    前言本文简介StableDiffusionWebUI是允许用户自行安装插件的,插件的种类有很多,有将页面翻译成中文的插件,也有提示词补全插件,也有精细控制出图的插件。以汉化为例,StableDiffusionWebUI默认是英文的,我们只需装个汉化插件然后重启一下项目就能把页面变成中文了。安装......
  • 深度学习基础案例2--从0到1构建CNN卷积神经网络(以识别CIFR10为例)
    ......
  • 本地化部署GraphRAG+Ollama,实现基于知识图谱的智能问答
    citingfromhttps://medium.com/@vamshirvk/unlocking-cost-effective-local-model-inference-with-graphrag-and-ollama-d9812cc60466之前写过一篇使用deepseek和智谱AI实现《红楼梦》中人物关系智能问答的随笔但deepseek提供的免费tokens只有500万个,GraphRAG构建图谱的索引和......
  • 以Zed项目为例学习大型Rust项目的组织与管理
    说明Zed项目代码:https://github.com/zed-industries/zed.git本文项目代码:https://github.com/VinciYan/zed_workspace.gitZed是一款由Atom创始人开发的高性能、协作友好的现代开源代码编辑器,使用Rust编写,集成AI辅助功能,旨在结合传统编辑器的速度和现代IDE的智能特性Zed项目......
  • 基于SiliconCloud快速体验GraphRag.Net
    SiliconCloud介绍SiliconCloud基于优秀的开源基础模型,提供高性价比的GenAI服务。不同于多数大模型云服务平台只提供自家大模型API,SiliconCloud上架了包括Qwen、DeepSeek、GLM、Yi、Mistral、LLaMA3、SDXL、InstantID在内的多种开源大语言模型及图片生成模型,用户可自由切......
  • Tool-Docker-以ubuntu:latest为例
    Tool-Docker-以ubuntu:latest为例Ubuntu-Installdockersearchubuntu:查询镜像dockerpullubuntu[:version]:拉取镜像dockerimages:查看镜像dockerps-a:查看当前容器状态dockerrun-itd--namecontainer-nameimages-name[:version]/bin/bash:运行容器dockerexec......
  • 如何把Connection 封装到工具类里面 调用工具类方法实现 增删改查操作 java JDBC
    如何把Connection封装到工具类里面调用工具类方法实现增删改查操作javaJDBC使用数据库连接池以HikariCP为例在JDBC中,使用数据库连接池是一个常见的做法,以提高数据库操作的效率和性能。连接池管理着一组数据库连接,这些连接可以被重用而不是每次需要时都创建新的连接。......
  • 再探GraphRAG:如何提升LLM总结能力?
    作者:王振亚编者语:自微软发布GraphRAG之后,相关解读文层出不穷,其中不乏优秀的内容。比如前段时间转载薛明同学的《微软GraphRAG框架源码解读》让大家对GraphRAG的开源代码有了快速的认识。这次我们分享一下来自蚂蚁技术同学王振亚的对GraphRAG如何提升LLM总结能力的思考,作者对Gr......