环境基础:
neofetch
.-/+oossssoo+/-. root@zhy-cuda
`:+ssssssssssssssssss+:` -------------
-+ssssssssssssssssssyyssss+- OS: Ubuntu 22.04 LTS x86_64
.ossssssssssssssssssdMMMNysssso. Host: SA5212M5 00001
/ssssssssssshdmmNNmmyNMMMMhssssss/ Kernel: 6.8.4-3-pve
+ssssssssshmydMMMMMMMNddddyssssssss+ Uptime: 13 hours, 43 mins
/sssssssshNMMMyhhyyyyhmNMMMNhssssssss/ Packages: 535 (dpkg)
.ssssssssdMMMNhsssssssssshNMMMdssssssss. Shell: bash 5.1.16
+sssshhhyNMMNyssssssssssssyNMMMysssssss+ Resolution: 1024x768
ossyNMMMNyMMhsssssssssssssshmmmhssssssso Terminal: node
ossyNMMMNyMMhsssssssssssssshmmmhssssssso CPU: Intel Xeon Gold 6138 (80) @ 3.700GHz
+sssshhhyNMMNyssssssssssssyNMMMysssssss+ GPU: NVIDIA GeForce GTX 1080 Ti
.ssssssssdMMMNhsssssssssshNMMMdssssssss. Memory: 3977MiB / 32768MiB
/sssssssshNMMMyhhyyyyhdNMMMNhssssssss/
+sssssssssdmydMMMMMMMMddddyssssssss+
/ssssssssssshdmNNNNmyNMMMMhssssss/
.ossssssssssssssssssdMMMNysssso.
-+sssssssssssssssssyyyssss+-
`:+ssssssssssssssssss+:`
.-/+oossssoo+/-.
nvidia-smi
Sun Jul 28 05:42:24 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.154.05 Driver Version: 535.154.05 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce GTX 1080 Ti On | 00000000:3B:00.0 Off | N/A |
| 0% 27C P8 9W / 300W | 2MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| No running processes found |
+---------------------------------------------------------------------------------------+
安装conda
直接来到官网安装,选择跳过注册即可:
https://www.anaconda.com/download/success
wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
chmod +x Anaconda3-2024.06-1-Linux-x86_64.sh
export LC_ALL=C.UTF-8
export LANG=C.UTF-8
./Anaconda3-2024.06-1-Linux-x86_64.sh
中途出现了一个路径错误,但是我并有中文路径,所以加上了两句export,之后正常安装。
然后重启终端。
安装conda环境
conda create --name nerfstudio -y python=3.8
conda activate nerfstudio
python -m pip install --upgrade pip
到这里正常,然后需要安装一些包。这里加入代理
# 设置代理
conda config --set proxy_servers.http http://10.10.10.100:7890
conda config --set proxy_servers.https http://10.10.10.100:7890
# 取消代理
conda config --set proxy_servers.http http://10.10.10.100:7890
conda config --set proxy_servers.https http://10.10.10.100:7890
然后发现代理无效,于是使用清华源安装对应的库:
pip3 install torch==2.1.2 torchvision==0.16.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
然后设置conda 清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/Boys_Wu/article/details/106623192
然后安装
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
最后从源码安装nerfstudio即可:
git clone https://github.com/nerfstudio-project/nerfstudio.git
cd nerfstudio
pip install --upgrade pip setuptools
pip install -e .
标签:http,--,配置,环境,nerfstudio,conda,https,config
From: https://www.cnblogs.com/zhywyt/p/18328141