首页 > 其他分享 >解锁GraphRag.Net的无限可能:手把手教你集成国产模型和本地模型

解锁GraphRag.Net的无限可能:手把手教你集成国产模型和本地模型

时间:2024-08-05 16:39:57浏览次数:10  
标签:GraphRag 自定义 模型 new Net null public

        在上次的文章中,我们已经详细介绍了GraphRag的基本功能和使用方式。如果你还不熟悉,建议先阅读前面的文章

        通过前两篇文章,相信你已经了解到GraphRag.Net目前只支持OpenAI规范的接口,但许多小伙伴在社区中提议,希望能增加对本地模型(例如:ollama等)的支持。所以这次,我们将探讨如何在GraphRag.Net中使用自定义模型和本地模型。

 

为什么选择GraphRag.Net?

        GraphRag.Net采用了Semantic Kernel作为基础,让我们能够非常简洁地抽象出会话与向量接口。因此,用户可以非常方便地实现自己定制的解决方案。接下来,我们会通过一个具体的例子,展示如何将本地模型和国产模型集成到GraphRag.Net中。

默认配置方法

        首先,我们来看看如何进行默认配置:

// OpenAI配置
builder.Configuration.GetSection("OpenAI").Get<OpenAIOption>();
// 文档切片配置
builder.Configuration.GetSection("TextChunker").Get<TextChunkerOption>();
// 配置数据库连接
builder.Configuration.GetSection("GraphDBConnection").Get<GraphDBConnectionOption>();

// 注意,需要先注入配置文件,然后再注入GraphRag.Net
builder.Services.AddGraphRagNet();

        这里,我们将在默认配置中注入OpenAI的配置、文本切片的配置和数据库连接的配置。然后,依次注入这些配置文件和GraphRag.Net的服务。

自定义配置方法

        如果需要自定义模型或本地模型,可能需要实现一些额外的服务接口,下面是自定义配置的示例:

var kernelBuild = Kernel.CreateBuilder();
kernelBuild.Services.AddKeyedSingleton<ITextGenerationService>("mock-text", new MockTextCompletion());
kernelBuild.Services.AddKeyedSingleton<IChatCompletionService>("mock-chat", new MockChatCompletion());
kernelBuild.Services.AddSingleton<ITextEmbeddingGenerationService>(new MockTextEmbeddingGeneratorService());
kernelBuild.Services.AddKeyedSingleton("mock-embedding", new MockTextEmbeddingGeneratorService());

builder.Services.AddGraphRagNet(kernelBuild.Build());

在这个自定义配置示例中,我们引入了三个自定义服务接口:ITextGenerationServiceIChatCompletionServiceITextEmbeddingGenerationService

实现自定义服务接口

接下来,我们需要为每个服务接口提供具体的实现。以下是三个接口的具体实现:

实现IChatCompletionService

  public class MockChatCompletion : IChatCompletionService
  {
      private readonly Dictionary<string, object?> _attributes = new();
      private string _chatId;


      private static readonly JsonSerializerOptions _jsonSerializerOptions = new()
      {
          NumberHandling = JsonNumberHandling.AllowReadingFromString,
          Encoder = JavaScriptEncoder.Create(UnicodeRanges.All)
      };

      public IReadOnlyDictionary<string, object?> Attributes => _attributes;

      public MockChatCompletion()
      {

      }

      public async Task<IReadOnlyList<ChatMessageContent>> GetChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
      {
          StringBuilder sb = new();
          string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{chatHistory.LastOrDefault().ToString()}";
          return [new(AuthorRole.Assistant, result.ToString())];
      }

      public async IAsyncEnumerable<StreamingChatMessageContent> GetStreamingChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
      {
          StringBuilder sb = new();
          string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{chatHistory.LastOrDefault().ToString()}";
          foreach (var c in result)
          {
              yield return new StreamingChatMessageContent(AuthorRole.Assistant, c.ToString());
          }
      }
  }

  

实现ITextGenerationService

 public class MockTextCompletion : ITextGenerationService, IAIService
 {
     private readonly Dictionary<string, object?> _attributes = new();
     private string _chatId;

     private static readonly JsonSerializerOptions _jsonSerializerOptions = new()
     {
         NumberHandling = JsonNumberHandling.AllowReadingFromString,
         Encoder = JavaScriptEncoder.Create(UnicodeRanges.All)
     };

     public IReadOnlyDictionary<string, object?> Attributes => _attributes;

     public MockTextCompletion()
     {

     }

     public async Task<IReadOnlyList<TextContent>> GetTextContentsAsync(string prompt, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, CancellationToken cancellationToken = default)
     {
         StringBuilder sb = new();
         string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{prompt}";
         return [new(result.ToString())];
     }

     public async IAsyncEnumerable<StreamingTextContent> GetStreamingTextContentsAsync(string prompt, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, CancellationToken cancellationToken = default)
     {
         StringBuilder sb = new();
         string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{prompt}";
         foreach (var c in result)
         {
             var streamingTextContent = new StreamingTextContent(c.ToString(), modelId: "mock");

             yield return streamingTextContent;
         }
     }
 }

实现ITextEmbeddingGenerationService

  public sealed class MockTextEmbeddingGeneratorService : ITextEmbeddingGenerationService
  {
      private Dictionary<string, object?> AttributesInternal { get; } = [];
      public IReadOnlyDictionary<string, object?> Attributes => this.AttributesInternal;
      public MockTextEmbeddingGeneratorService()
      {

      }
      public async Task<IList<ReadOnlyMemory<float>>> GenerateEmbeddingsAsync(
        IList<string> data,
        Kernel? kernel = null,
        CancellationToken cancellationToken = default)
      {
          IList<ReadOnlyMemory<float>> results = new List<ReadOnlyMemory<float>>();

          float[] array1 = { 1.0f, 2.0f, 3.0f };
          float[] array2 = { 4.0f, 5.0f, 6.0f };
          float[] array3 = { 7.0f, 8.0f, 9.0f };

          // 将数组包装为ReadOnlyMemory<float>并添加到列表中
          results.Add(new ReadOnlyMemory<float>(array1));
          results.Add(new ReadOnlyMemory<float>(array2));
          results.Add(new ReadOnlyMemory<float>(array3));

          return results;
      }

      public void Dispose()
      {

      }
  }

  

        看到这里,你可能已经发现,集成自定义模型和本地模型非常简单。只需按照上述步骤,实现相应的接口并注入配置,你就可以在GraphRag.Net中使用这些自定义的功能。

 

结语

        通过本文的介绍,我们了解了如何在GraphRag.Net中集成国产模型和本地模型。希望大家能够根据这些示例,开发出更多适合自己需求的功能。更多精彩内容,欢迎关注我的公众号,并发送进群加入我们的GraphRag.Net交流群,与社区小伙伴们一起交流学习!

        感谢阅读,我们下期再见!

 

标签:GraphRag,自定义,模型,new,Net,null,public
From: https://www.cnblogs.com/xuzeyu/p/18343527

相关文章

  • FLUX.1最强AI绘画开源新模型,本地部署教程!
    原文链接:FLUX.1最强AI绘画开源新模型,本地部署教程!(chinaz.com)Flux最近收到了很多模型爱好者的好评,出图质量超越SD3和MJ,许多人说Flux才是大家心目中的SD3,所以我也是非常好奇FLux的实力在这里把本地部署的过程分享给大家官网参考图:Flux官网首页:https://blackforestlabs.ai......
  • 生成 512x512 照片的模型
    我怎样才能让这个模型生成512x512像素或更大的图像?现在它生成64x64px图像。我尝试更改模型中的一些值,但没有成功。这些卷积层(尤其是Conv2D和Conv2DTranspose)如何工作?我不明白如何在这些层中调整图像的大小。importtensorflowastffromtensorflowimportkerasfrom......
  • 为什么 Langchain HuggingFaceEmbeddings 模型尺寸与 HuggingFace 上所述的不一样
    我使用的是langchainHuggingFaceEmbeddings模型:dunzhang/stella_en_1.5B_v5。当我查看https://huggingface.co/spaces/mteb/leaderboard时,我可以看到型号是8192。但当我这样做时len(embed_model.embed_query("heyyou"))它给了我1024。请问为什么会有这种差......
  • 【Dynamo】AnyCAD使用Dynamo绘制三维模型(二)——生成序列和范围的几种方式
    说明:Dynamo为开源项目,开源地址:https://github.com/DynamoDS/Dynamo.git本文章使用版本:v3.0.3范围使用Range节点start和end分别表示范围的边界,step表示步长。如下为[1,10]范围内步长为2结果​使用CodeBlock节点在CodeBlock填写如下形式的代码beginning..end..step-si......
  • OpenGL实现3D游戏编程【连载2】——了解并创建3D空间模型
    1、本节实现的内容上一节我们创建一个简单的窗口,本节我们需要了解一下细节内容,同时为了方便观看,我们需要显示一个世界坐标轴,建立一个直观的三维空间。2、我们的眼睛设定(gluPerspective函数)上一节课,我们创建了一个简单的opengl窗口,并显示了一个简单的3d模型正方体,这节我......
  • 麒麟V10 .NET6 部署教程
    1..NETCORE环境这里我用的是.NET6rpm-Uvhhttps://packages.microsoft.com/config/centos/7/packages-microsoft-prod.rpmyuminstalldotnet-sdk-6.0 2.上传文件然后解压FTP,我这里用rar所以要装一下yuminstallunrarunrarx你的项目.rar3.安装和配置nginxyu......
  • Python实现简单的模型调优技术
    Python实现简单的模型调优技术一、开篇:模型调优的魅力所在1.1模型调优:不只是参数游戏1.2为什么好的模型也需要调优二、基础篇:理解模型调参的必要性2.1模型评估指标:选择合适的尺子2.2常见调参方法:从手动到自动化2.3验证集的重要性:不要让模型裸奔三、实战篇:动手......
  • ComfyUI插件:ComfyUI-BrushNet节点
    前言:学习ComfyUI是一场持久战,而ComfyUI-BrushNet是最近的局部重绘节点,其包含BrushNet和Powerpaint两个主要节点,其中BrushNet有SD1.5和SDXL两个版本,PowerPaint只有1.5的模型可以使用,学会该插件,你可以完成对图片的局部重绘以及产品换背景等多个工作流。祝大家学习顺利,早日成为Comfy......
  • 微调大语言模型——LLaMa-Factory平台搭建(非常详细)
    我们采用LLaMA-Factory平台进行微调语言模型,详细信息可以访问github主页(https://github.com/hiyouga/LLaMA-Factory)浏览。租赁显卡采用AutoDL作为云平台进行微调训练。Win系统采用终端命令行操作的过程差不多。选择合适的显卡,点击租赁LLaMa-Factory所需要的设备软硬......
  • 改变行业的人工智能模型Top10!
    随着人工智能技术的飞速发展,人工智能大模型在各个领域展现出了前所未有的潜力和应用价值,正在彻底改变着行业格局。本文讨论了当今在各个行业掀起波澜的十大人工智能模型,探索它们的独特功能以及对技术和行业未来的变革性影响。 1.CNN卷积神经网络 (CNN)是一类深度神经网络......