Description
给定一张 \(n\) 个点 \(m\) 条边的无重边无自环的有向图,你要从 \(1\) 号点到 \(n\) 号点去。
如果你在 \(t\) 时刻之后到达 \(n\) 号点,你要交 \(x\) 元的罚款。
每条边从 \(a_i\) 到 \(b_i\),走过它需要花费 \(c_i\) 元,多次走过同一条边需要多次花费。
走过每条边所需的时间是随机的,对于 \(k \in [1,t]\),\(\frac{p_{i,k}}{10^5}\) 表示走过第 \(i\) 条边需要时间 \(k\) 的概率。因此如果多次走过同一条边,所需的时间也可能不同。
你希望花费尽可能少的钱(花费与罚款之和)到达 \(n\) 号点,因此每到达一个点,你可能会更改原有的计划。
求在最优决策下,你期望花费的钱数。
\(n \le 50\),\(m \le 100\),\(t \le 2 \times 10^4\),\(x,c_i \le 10^6\),\(\sum_{k=1}^t p_{i,k} = 10^5\),答案精度误差 \(\le 10^{-6}\)。
Solution
考虑 dp。
设 \(f_{i,j}\) 表示在 \(j\) 时刻走到 \(i\) 的期望花费,那么转移如下:
\[f_{i,j}= \begin{cases} 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &(i=n, j\leq t)\\ x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &(i=n, j> t)\\ x+\text{dist}(i,n)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &(i\neq n, j\geq t)\\ \min_{a_k=i}{\left\{\sum_{len=1}^{t}{p_{k,len}f_{b_k,j+len}+c_k}\right\}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &(i\neq n, j<t) \end{cases} \]直接暴力做是 \(O(mt^2)\) 的,过不了。
注意到最后一个转移是差卷积的形式,可以用分治 fft 进行优化。具体的,设 \(g_{i,k}=\sum_{len=1}^{t}{p_{k,len}f_{b_k,j+len}}\),那么分治到 \([k,k]\) 时就让 \(f_{i,k}\leftarrow g_{i,k}+c_k\)。
转移就考虑假设当前区间为 \([l,r]\),先递归处理 \([mid+1,r]\),然后处理时间 \([mid+1,r]\) 对 \([l,mid]\) 的 \(g\) 值的贡献,最后递归 \([l,mid]\)。
注意对于 \([t,2t-1]\) 这个区间由于不能内部进行转移所以不需要递归。
时间复杂度:\(O(mt\log^2 t)\)。
Code
#include <bits/stdc++.h>
#define int int64_t
using f64 = double;
const int kMaxN = 105, kMaxM = 105, kMaxT = 4e4 + 5;
struct Complex {
f64 a, b;
Complex(f64 _a = 0, f64 _b = 0) : a(_a), b(_b) {}
friend Complex operator +(const Complex &c1, const Complex &c2) { return {c1.a + c2.a, c1.b + c2.b}; }
friend Complex operator -(const Complex &c1, const Complex &c2) { return {c1.a - c2.a, c1.b - c2.b}; }
friend Complex operator *(const Complex &c1, const Complex &c2) { return {c1.a * c2.a - c1.b * c2.b, c1.a * c2.b + c2.a * c1.b}; }
};
using cp = Complex;
int n, m, t, x;
int u[kMaxM], v[kMaxM], w[kMaxM];
f64 dis[kMaxN][kMaxN], p[kMaxM][kMaxT * 2], f[kMaxN][kMaxT * 2], g[kMaxM][kMaxT * 2];
namespace FFT {
int n, m, c, len, rev[kMaxT * 50];
cp a[kMaxT * 50], b[kMaxT * 50], omg[kMaxT * 50], inv[kMaxT * 50];
int getlen(int n) {
int ret = 1;
for (c = 0; ret <= n + 1; ret <<= 1, ++c) {}
return ret;
}
void prework() {
const double kPi = acos(-1.0);
len = getlen(n + m + 5);
cp og = {cos(2 * kPi / len), sin(2 * kPi / len)}, ig = {cos(2 * kPi / len), -sin(2 * kPi / len)};
omg[0] = inv[0] = {1, 0};
for (int i = 1; i < len; ++i) {
omg[i] = omg[i - 1] * og;
inv[i] = inv[i - 1] * ig;
for (int j = 0; j < c; ++j)
if (i >> j & 1)
rev[i] |= (1 << (c - j - 1));
}
}
void fft(cp *a, int n, cp *omg) {
for (int i = 0; i < n; ++i)
if (i < rev[i])
std::swap(a[i], a[rev[i]]);
for (int l = 2; l <= n; l <<= 1) {
int m = l / 2;
for (int i = 0; i < n; i += l) {
for (int j = 0; j < m; ++j) {
auto tmp = a[i + j + m] * omg[n / l * j];
a[i + j + m] = a[i + j] - tmp;
a[i + j] = a[i + j] + tmp;
}
}
}
}
void clear() {
for (int i = 0; i < len; ++i)
a[i] = b[i] = omg[i] = inv[i] = {0, 0}, rev[i] = 0;
n = m = c = len = 0;
}
void set(int _n, int _m) {
n = _n, m = _m;
}
void mul() {
prework();
fft(a, len, omg), fft(b, len, omg);
for (int i = 0; i < len; ++i) a[i] = a[i] * b[i];
fft(a, len, inv);
for (int i = 0; i < len; ++i) a[i].a /= len;
}
} // namespace FFT
void solve(int l, int r) {
if (l == r) {
for (int i = 1; i < n; ++i) f[i][l] = 1e18;
for (int i = 1; i <= m; ++i)
if (u[i] != n) f[u[i]][l] = std::min(f[u[i]][l], g[i][l] + w[i]);
return;
}
int mid = (l + r) >> 1;
if (r - l + 1 != 2 * t) solve(mid + 1, r);
for (int i = 1; i <= m; ++i) {
if (u[i] == n) continue;
FFT::set(r - l, r - mid);
for (int j = 1; j <= r - l; ++j) FFT::a[j] = {p[i][j], 0};
for (int j = 1; j <= r - mid; ++j) FFT::b[j] = {f[v[i]][r - j + 1], 0};
FFT::mul();
for (int j = r - mid + 1; j <= r - l + 1; ++j) {
g[i][r - j + 1] += FFT::a[j].a;
}
FFT::clear();
}
solve(l, mid);
}
void dickdreamer() {
std::cin >> n >> m >> t >> x;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
dis[i][j] = (i != j) * 1e18;
for (int i = 1; i <= m; ++i) {
std::cin >> u[i] >> v[i] >> w[i];
dis[u[i]][v[i]] = w[i];
for (int j = 1; j <= t; ++j) {
int x;
std::cin >> x;
p[i][j] = x / 1e5;
}
}
for (int k = 1; k <= n; ++k)
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
dis[i][j] = std::min(dis[i][j], dis[i][k] + dis[k][j]);
for (int i = 0; i < 2 * t; ++i) f[n][i] = x * (i > t);
for (int i = 1; i < n; ++i)
for (int j = t; j < 2 * t; ++j)
f[i][j] = x + dis[i][n];
solve(0, 2 * t - 1);
std::cout << std::fixed << std::setprecision(10) << f[1][0] << '\n';
}
int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}
标签:Kyoya,const,int,题解,Train,Complex,kMaxT,c2,c1
From: https://www.cnblogs.com/Scarab/p/18337581