Pinely Round 4 (Div. 1 + Div. 2)(A - F)
A - Maximize the Last Element
解题思路:
只有奇数位置能选。偶数位置前后都有奇数个数字,无法删完。
代码:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
#define fi first
#define se second
void solve()
{
int n;
cin >> n;
int mx = 0;
for (int i = 1; i <= n; i++)
{
int x;
cin >> x;
if (i & 1)
{
mx = max(mx, x);
}
}
cout << mx << '\n';
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
B - AND Reconstruction
解题思路:
\(b_i\)能确定\(a_i,a_{i+1}\)哪些二进制位一定为一,不冲突即可。
代码:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
#define fi first
#define se second
void solve()
{
int n;
cin >> n;
vector<int> a(n + 1), b(n + 1);
for (int i = 1; i < n; i++)
{
cin >> b[i];
for (int j = 0; j <= 30; j++)
{
if (b[i] >> j & 1)
{
if (!(a[i] >> j & 1))
{
a[i] += 1 << j;
}
if (!(a[i + 1] >> j & 1))
{
a[i + 1] += 1 << j;
}
}
}
}
bool ok = true;
for (int i = 1; i < n; i++)
{
if ((a[i] & a[i + 1]) != b[i])
{
ok = false;
break;
}
}
if (ok)
{
for (int i = 1; i <= n; i++)
{
cout << a[i] << " \n"[i == n];
}
}
else
{
cout << -1 << '\n';
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
C - Absolute Zero
解题思路:
最多\(40\)次,我们可以暴力操作。
设当前最大值为\(r\),最小值为\(l\)。每次减去\((r - l)/ 2+ l\),这样操作之后,整体区间上界必然减半。\(2^{40}> 10^9\),如果有解,一定足够。
代码:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
#define fi first
#define se second
void solve()
{
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
int q = 40;
vector<int> ans;
while (q--)
{
int r = -1;
int l = 1e9 + 1;
for (int i = 1; i <= n; i++)
{
r = max(r, a[i]);
l = min(l, a[i]);
}
int x = max(1, (r - l) / 2 + l);
if (r - l == 0)
{
ans.push_back(r);
for (int i = 1; i <= n; i++)
{
a[i] = 0;
}
break;
}
bool z = true;
for (int i = 1; i <= n; i++)
{
a[i] = abs(a[i] - x);
}
ans.push_back(x);
}
bool ok = true;
for (int i = 1; i <= n; i++)
{
if (a[i])
{
ok = false;
break;
}
}
if (ok)
{
cout << ans.size() << '\n';
for (auto x : ans)
{
cout << x << ' ';
}
cout << endl;
}
else
{
cout << -1 << '\n';
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
D - Prime XOR Coloring
解题思路:
正向思考连边数太多,尝试反向思考,考虑哪些点一定不会互相连边。
根据样例以及四色定理,当\(n \geq 6\)后,一定用四种颜色染色。
质数中除了\(2\)都是奇数。\(2\)的二进制表示为\((10)\),其余质数二进制最低两位\((01),(11)\)。二进制最低两位为\((00)\)一定不是质数。
如果两个数字\(mod\ 4\)同余,那么他们异或起来二进制最低两位一定是\((00)\),他们一定不连边,可以同色。
代码:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
#define fi first
#define se second
void solve()
{
int n;
cin >> n;
if (n == 1)
{
cout << 1 << '\n';
cout << 1 << '\n';
}
else if (n == 2)
{
cout << 2 << '\n';
cout << 1 << ' ' << 2 << '\n';
}
else if (n == 3)
{
cout << 2 << '\n';
cout << 1 << ' ' << 2 << ' ' << 2 << '\n';
}
else if (n == 4)
{
cout << 3 << '\n';
cout << 1 << ' ' << 2 << ' ' << 2 << ' ' << 3 << '\n';
}
else if (n == 5)
{
cout << 3 << '\n';
cout << 1 << ' ' << 2 << ' ' << 2 << ' ' << 3 << ' ' << 3 << '\n';
}
else
{
cout << 4 << '\n';
for (int i = 0; i < n; i++)
{
cout << (i % 4) + 1 << " \n"[i == n];
}
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
E - Coloring Game
解题思路:
如果是二分图,选\(Bob\)。反之,选\(Alice\)。
不是二分图时,随便给\(n\)次颜色总归能赢。
选\(Bob\):假定二分图为\((1,2)\)两种颜色,每次选择颜色时至少有其中一种,我们按设定去选点。直到有一种颜色\(x\)涂满了,接下来每次选择至少有\((3 - x, 3)\)其中一种,全部涂另一边即可。
代码:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
#define fi first
#define se second
const int N = 1e4 + 10;
vector<int> e[N];
int color[N];
vector<int> v[3];
bool dfs(int u, int fa, int c)
{
color[u] = c;
for (auto v : e[u])
{
if (v != fa)
{
if (!color[v])
{
if (dfs(v, u, 3 - c))
{
return true;
}
}
else if (color[v] == c)
{
return true;
}
}
}
return false;
}
void solve()
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
e[i].clear();
color[i] = 0;
}
for (int i = 1; i <= m; i++)
{
int a, b;
cin >> a >> b;
e[a].push_back(b);
e[b].push_back(a);
}
bool ok = true;
for (int i = 1; i <= n; i++)
{
if (!color[i])
{
if (dfs(i, -1, 1))
{
ok = false;
break;
}
}
}
auto pt = [&](int a, int b)
{
cout << a << ' ' << b << '\n';
cout.flush();
};
if (ok)
{
for (int i = 1; i <= n; i++)
{
if (color[i] == 1)
{
v[1].push_back(i);
}
else
{
v[2].push_back(i);
}
}
cout << "Bob\n";
cout.flush();
int a, b;
for (int i = 1; i <= n; i++)
{
cin >> a >> b;
if (a > b)
{
swap(a, b);
}
if (a == 1 && b == 2)
{
if (v[1].size() > 0)
{
int u = v[1].back();
v[1].pop_back();
pt(u, 1);
}
else
{
int u = v[2].back();
v[2].pop_back();
pt(u, 2);
}
}
else if (a == 1 && b == 3)
{
if (v[1].size() > 0)
{
int u = v[1].back();
v[1].pop_back();
pt(u, 1);
}
else
{
int u = v[2].back();
v[2].pop_back();
pt(u, 3);
}
}
else
{
if (v[2].size() > 0)
{
int u = v[2].back();
v[2].pop_back();
pt(u, 2);
}
else
{
int u = v[1].back();
v[1].pop_back();
pt(u, 3);
}
}
}
}
else
{
cout << "Alice\n";
cout.flush();
int a, b;
for (int i = 1; i <= n; i++)
{
cout << 1 << ' ' << 2 << '\n';
cout.flush();
cin >> a >> b;
}
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
F - Triangle Formation
解题思路:
假设\(a + b \leq c\),根据\(a, b\)不断向序列后增添\(c\),发现在\(c \leq 10^9\)限制下,最多大概\(44\)次\(c\)就会大于\(10^9\),这是斐波那契数列\(a_1 + a_2 = a_3\)。
所以,如果区间长度大于大概\(50\)就一定有两组解。
剩下区间长度情况就可以暴力判断。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
#define fi first
#define se second
void solve()
{
int n, q;
cin >> n >> q;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
while (q--)
{
int l, r;
cin >> l >> r;
if (r - l + 1 >= 60)
{
cout << "YES\n";
}
else
{
vector<int> v;
for (int i = l; i <= r; i++)
{
v.push_back(a[i]);
}
sort(v.begin(), v.end());
vector<int> pos;
for (int i = 2; i < v.size(); i++)
{
if (v[i - 2] + v[i - 1] > v[i])
{
pos.push_back(i);
}
}
if (pos.size() >= 2)
{
if (pos.back() - pos[0] >= 3)
{
cout << "YES\n";
continue;
}
auto check = [&](int i, int j, int k)
{
return v[i] + v[j] > v[k];
};
if (pos.back() >= 5)
{
int i = pos.back();
if (check(i - 5, i - 3, i - 2) && check(i - 4, i - 1, i))
{
cout << "YES\n";
}
else if (check(i - 5, i - 2, i - 1) && check(i - 4, i - 3, i))
{
cout << "YES\n";
}
else if (check(i - 5, i - 1, i) && check(i - 4, i - 3, i - 2))
{
cout << "YES\n";
}
else
{
cout << "NO\n";
}
}
else
{
cout << "NO\n";
}
}
else
{
cout << "NO\n";
}
}
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
return 0;
}
标签:int,Pinely,back,long,solve,using,Div,Round,define
From: https://www.cnblogs.com/value0/p/18330698