首页 > 其他分享 >Leaf

Leaf

时间:2024-07-28 10:50:35浏览次数:17  
标签:服务 节点 号段 tag Leaf ID

Leaf这个名字是来自德国哲学家、数学家莱布尼茨的一句话:

There are no two identical leaves in the world > “世界上没有两片相同的树叶”

综合对比上述几种方案,每种方案都不完全符合我们的要求。所以Leaf分别在上述第二种和第三种方案上做了相应的优化,实现了Leaf-segment和Leaf-snowflake方案。

Leaf-segment数据库方案

第一种Leaf-segment方案,在使用数据库的方案上,做了如下改变:

  • 原方案每次获取ID都得读写一次数据库,造成数据库压力大。改为利用proxy server批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。

  • 各个业务不同的发号需求用biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。

数据库表设计如下:

+-------------+--------------+------+-----+-------------------+-----------------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+-------------------+-----------------------------+
| biz_tag | varchar(128) | NO | PRI | | |
| max_id | bigint(20) | NO | | 1 | |
| step | int(11) | NO | | NULL | |
| desc | varchar(256) | YES | | NULL | |
| update_time | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+--------------+------+-----+-------------------+-----------------------------+
重要字段说明:biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step,大致架构如下图所示:

image

test_tag在第一台Leaf机器上是11000的号段,当这个号段用完时,会去加载另一个长度为step=1000的号段,假设另外两台号段都没有更新,这个时候第一台机器新加载的号段就应该是30014000。同时数据库对应的biz_tag这条数据的max_id会从3000被更新成4000,更新号段的SQL语句如下:

Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit
这种模式有以下优缺点:

优点:

Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。
缺点:

ID号码不够随机,能够泄露发号数量的信息,不太安全。
TP999数据波动大,当号段使用完之后还是会hang在更新数据库的I/O上,tg999数据会出现偶尔的尖刺。
DB宕机会造成整个系统不可用。
双buffer优化
对于第二个缺点,Leaf-segment做了一些优化,简单的说就是:

Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。

为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。详细实现如下图所示:

采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。

每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。

Leaf高可用容灾
对于第三点“DB可用性”问题,我们目前采用一主两从的方式,同时分机房部署,Master和Slave之间采用半同步方式[5]同步数据。同时使用公司Atlas数据库中间件(已开源,改名为DBProxy)做主从切换。当然这种方案在一些情况会退化成异步模式,甚至在非常极端情况下仍然会造成数据不一致的情况,但是出现的概率非常小。如果你的系统要保证100%的数据强一致,可以选择使用“类Paxos算法”实现的强一致MySQL方案,如MySQL 5.7前段时间刚刚GA的MySQL Group Replication。但是运维成本和精力都会相应的增加,根据实际情况选型即可。

同时Leaf服务分IDC部署,内部的服务化框架是“MTthrift RPC”。服务调用的时候,根据负载均衡算法会优先调用同机房的Leaf服务。在该IDC内Leaf服务不可用的时候才会选择其他机房的Leaf服务。同时服务治理平台OCTO还提供了针对服务的过载保护、一键截流、动态流量分配等对服务的保护措施。

Leaf-snowflake方案

Leaf-segment方案可以生成趋势递增的ID,同时ID号是可计算的,不适用于订单ID生成场景,比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的。面对这一问题,我们提供了 Leaf-snowflake方案。

image

Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:

image

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

弱依赖ZooKeeper

除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了SLA。

解决时钟问题

因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。

image

参见上图整个启动流程图,

  • 服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:

  • 若写过,则用自身系统时间与leaf_forever/${self}节点记录时间做比较,若小于leaf_forever/${self}时间则认为机器时间发生了大步长回拨,服务启动失败并报警。

  • 若未写过,证明是新服务节点,直接创建持久节点leaf_forever/${self}并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。

  • 若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点leaf_temporary/${self} 维持租约。

  • 否则认为本机系统时间发生大步长偏移,启动失败并报警。

  • 每隔一段时间(3s)上报自身系统时间写入leaf_forever/${self}。

由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警,如下:

 //发生了回拨,此刻时间小于上次发号时间
 if (timestamp < lastTimestamp) {
            long offset = lastTimestamp - timestamp;
            if (offset <= 5) {
                try {
                	//时间偏差大小小于5ms,则等待两倍时间
                    wait(offset << 1);//wait
                    timestamp = timeGen();
                    if (timestamp < lastTimestamp) {
                       //还是小于,抛异常并上报
                        throwClockBackwardsEx(timestamp);
                      }    
                } catch (InterruptedException e) {  
                   throw  e;
                }
            } else {
                //throw
                throwClockBackwardsEx(timestamp);
            }
        }
 //分配ID

从上线情况来看,在2017年闰秒出现那一次出现过部分机器回拨,由于Leaf-snowflake的策略保证,成功避免了对业务造成的影响。

Leaf现状

Leaf在美团点评公司内部服务包含金融、支付交易、餐饮、外卖、酒店旅游、猫眼电影等众多业务线。目前Leaf的性能在4C8G的机器上QPS能压测到近5万/s,TP999 1ms,已经能够满足大部分的业务的需求。每天提供亿数量级的调用量,作为公司内部公共的基础技术设施,必须保证高SLA和高性能的服务,我们目前还仅仅达到了及格线,还有很多提高的空间。

标签:服务,节点,号段,tag,Leaf,ID
From: https://www.cnblogs.com/DCFV/p/18327961

相关文章

  • SpringBoot Thymeleaf 模板标签
    扩展Thymeleaf模板标签上一篇我们写到SpringBoot依赖之Thymeleaf模版引擎的使用,当时只列举了简单文本标签,下面针对多标签进行分析和分享。Thymeleaf的模板标签,包括文本显示、属性设置、条件判断、循环迭代、表单处理、片段引用、国际化支持等常用功能。我们尽可能......
  • SpringBoot与Thymeleaf模板技术整合
    以下是一个简单的SpringBoot整合Thymeleaf的入门案例:1.创建一个SpringBoot项目,并添加Thymeleaf依赖。org.springframework.bootspring-boot-starter-thymeleaforg.springframework.bootspring-boot-starter-web2.在src/main/resources/templates目录下创建一个HTML模......
  • 邮件发送与使用thymeleaf引擎重置密码邮件
    邮件发送原生java-mail进行邮件发送;前提:先登录邮箱,开启POP3/SMTP服务,使第三方可以使用授权码登录邮箱。@TestpublicvoidsendEmail(){Stringaccount="[email protected]";Stringpwd="KXNZHOZDMLTVWHOZ";//设置SMTP请求头Pr......
  • LeetCode 1530. Number of Good Leaf Nodes Pairs
    原题链接在这里:https://leetcode.com/problems/number-of-good-leaf-nodes-pairs/description/题目:Youaregiventhe root ofabinarytreeandaninteger distance.Apairoftwodifferent leaf nodesofabinarytreeissaidtobegoodifthelengthof thesh......
  • Uniapp 使用 Leaflet
    在Uniapp中使用Leaflet,可以按照以下步骤进行:安装Leaflet:如果您使用的是H5平台,可以通过以下命令在项目根目录安装Leaflet:npminstallleaflet对于其他平台(如小程序),可能无法直接通过npm安装,需要手动引入Leaflet的相关资源文件。在页面中引入Leaflet:在需......
  • layui js thymeleaf 公共工具类
    layuijsthymeleaf公共工具类其中功能包括:普通表格渲染树形表格渲染普通编辑(添加/删除/编辑)更多编辑(添加/编辑/更多)上传图片constcommon={getTable(table,url,cols,condition){if(!condition||condition==''){condition=......
  • 基于springboot+layui+thymeleaf的学生成绩管理系统设计与实现(源码+SQL+使用说明)
    本项目适合做计算机相关专业的毕业设计,课程设计,技术难度适中、工作量比较充实。完整资源获取点击下载完整资源1、资源项目源码均已通过严格测试验证,保证能够正常运行;2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通;3、本项目比较适合计算......
  • Leaflet-vue 热力图 (设置热力图颜色)
    使用的热力图是heatmap.js因为是Leaflet,所以还要引入一个对应的插件leaflet-heatmap.js,这个插件就在heatmap目录下的plugins里面。代码如下:import"heatmap.js";importHeatmapOverlayfrom"@/utils/leaflet-heatmap.js";letcfg={radius:0.5,//半径maxOpacity......
  • LaTeX 编辑协作平台 Overleaf 安装和使用教程
    在学术界和科技行业,LaTeX已成为撰写高质量文档的标准工具。然而,传统的LaTeX使用体验常常伴随着以下挑战:学习曲线陡峭环境配置复杂多人协作困难实时预览不便当然,市面上不乏很多在线LaTeX编辑平台,但它们大多是封闭的商业服务,无法完全满足用户对数据隐私和自主可控的需求......
  • java使用@Controller注解跳转到thmyleaf页面时候报错
     报错如下######当我使用RestController时候接口可以得到返回的对象↓但是查看RestController和Controller的区别之后:也就是说@RestController返回的是一个对象,@Controller默认情况下,方法的返回值会被解析为一个视图名称,并寻找与该名称匹配的视图进行渲染。这意味着返回......