647. 回文子串
dp和双指针。
dp[i][j]的含义:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
因此遍历顺序也有改变,一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
class Solution {
public:
int countSubstrings(string s) {
vector<vector<bool>> dp(s.size(),vector<bool>(s.size(),false));
int res=0;
for(int i=s.size()-1;i>=0;i--){
for(int j=i;j<s.size();j++){
if(s[i]==s[j]){
if(j-i<=1){
dp[i][j]=true;
res++;
}
else if(dp[i+1][j-1]){
res++;
dp[i][j]=true;
}
}
}
}
return res;
}
};
/*双指针
class Solution {
public:
int countSubstrings(string s) {
int result = 0;
for (int i = 0; i < s.size(); i++) {
result += extend(s, i, i, s.size()); // 以i为中心
result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心
}
return result;
}
int extend(const string& s, int i, int j, int n) {
int res = 0;
while (i >= 0 && j < n && s[i] == s[j]) {
i--;
j++;
res++;
}
return res;
}
};
*/
516.最长回文子序列
如果s[i]与s[j]相同,则那么dp[i][j] = dp[i + 1][j - 1] + 2;
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j - 1]。
那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int>> dp(s.size(),vector<int>(s.size(),0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
for(int i=s.size()-1;i>=0;i--){
for(int j=i+1;j<s.size();j++){
if(s[i]==s[j]){
dp[i][j]=dp[i+1][j-1]+2;
}
else{
dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
}
}
}
return dp[0][s.size()-1];
}
};
标签:子串,int,part13,序列,size,回文,dp,516
From: https://blog.csdn.net/m0_69189584/article/details/140625893