首页 > 其他分享 >多模态大模型:基础架构

多模态大模型:基础架构

时间:2024-07-23 12:29:27浏览次数:13  
标签:模态 视觉编码 模型 MLLM 学习 基础架构 图像 视觉

多模态大型语言模型(MLLM)是人工智能领域的前沿创新,它结合了语言和视觉模型的功能,可以处理复杂的任务,如视觉问答和图像字幕。这些模型利用大规模预训练,集成了多种数据模态,以显著提高其在各种应用程序中的性能。

架构概览

较为常见的MLLM框架可以分为三个主要模块:接收且有效编码的多模态编码器、多模态之间数据对齐的投影器、和接收对齐信号并执行推理的大语言模型。当然各种项目总有自己的差异化设计,例Chameleon或者Octo。

MLLM的主要的优化方向,在于处理高分辨率图像、压缩视觉标记(token)、多模态对齐、高效结构和利用紧凑语言模型等。

上图是一些MLLM的部分例子,将其中的基座LLM、视觉编码器、图像分辨率和投影器列具出来。

视觉编码器

来看看视觉编码器,与主流MLLM实践一致,基本上都是选择CLIP的预训练模型。这种方法有助于更好地对齐视觉和文本输入的特征空间。视觉编码器在MLLM参数中所占比例相对较小,因此与语言模型相比,轻量级优化不是刚需。

单一的编码器肯定无法在不同的任务中始终表现出色,将各种偏差的数据编码器进行联动则能够产生令人惊讶的相似结果。

BRAVE的深度消融实验证明了上述的结论。BRAVE按顺序连接了K个不同视觉编码器的特征(上图左)。之后这些串联特征被MEQ-Former进一步提炼(上图右)。

多个视觉编码器的确有助于捕捉广泛的视觉表征,从而增强模型对视觉数据的理解。Cobra将DINOv2和SigLIP集成为其视觉主干,其原理是将DINOv2的低级空间特征与 SigLIP提供的语义属性相结合将提高后续任务的性能。SPHINX-X采用两个视觉编码器DINOv2和CLIP-ConvNeXt。

鉴于这些基础模型已经通过不同的学习方法(自监督与弱监督)和网络架构(ViT与 CNN)进行预训练,应该能够提供互补和复杂的视觉表征。

轻量级视觉编码器Vision Transformer架构在实际应用中由于硬件和环境限制而面临挑战。ViTamin代表一种轻量级视觉模型,专门针对视觉和语言模型量身定制。依照下图所示,通过两层的MBC外加一层的注意力块完成视觉编码,然后和文本一起进行对比学习。

值得一提,ViTamin-XL的参数数量只有436M,却达到了ImageNet zero-shot 82.9%的准确率,超过了EVA-E的准确率82.0%。要知道EVA-E的参数数量为4.4B。

视觉投影器

视觉投影器的目的在于将视觉嵌入(Visual embeddings)等输入映射到文本空间(Text Embeddings)中。换句话说也就是将不同模态进行对齐。

1)投影,相信读者最直观的就是线性投影仪或多层感知器(MLP)来实现,可以理解就是最普通的神经网络。比如几层的神经网与非线性激活函数组合而成。

2)部分的投影基于注意力机制。BLIP2引入Q-Former,这是一种轻量级转换器,它使用一组可学习的查询向量从冻结的视觉模型中提取视觉特征。

Q-former基于对比学习进行训练,上图右侧展示了由Flamingo提出的感知重采样器(Perceiver Resampler)考虑在交叉注意力中使用earned Queries(上图彩色序列块)作为Q,而图像特征展开与Q连接起来,在交叉注意力中充当K和V。

上图为BLIP-2的第二阶段架构,通过这种方式,在Learned Queries的相应位置的转换器输出被作为视觉特征的聚合表示,从而将可变长度的视频帧特征标准化为固定大小的特征。

3)部分的投影基于CNN。MobileVLMv2提出了LDPv2,这是一种新的投影。由三部分组成:特征转换、Token压缩和位置信息增强。通过使用逐点卷积层、平均池化和具有跳跃连接的PEG模块,LDPv2实现了更高的效率,与原始LDP相比,参数减少了99.8%,处理速度略快。

4)最后还有基于大名鼎鼎的Mamba,VL-Mamba在其视觉语言投影仪中实现了2D视觉选择性扫描(VSS)技术,促进了不同学习方法的融合。

5)和所有武功都有最后一式一样,投影可以采用混合架构。Honeybee提出了两种视觉投影仪的组合,即C-Abstractor和D-Abstractor,它们遵循两个主要设计原则:(i)在视觉Token数量生成方面提供适应性,以及(ii)有效地维护本地上下文。下图详细的展示了Honeybee的投影混合架构:

C-Abstractor,或卷积抽象器,专注于通过采用卷积架构来熟练地对局部上下文进行建模。该结构由L个ResNet块组成,然后紧接着是额外的L个ResNet块,这有助于将视觉特征抽象为任意平方数量的视觉标记。而D-Abstractor是基于Deformable注意力的Abstractor。

视觉Token压缩

MLLM在需要复杂识别的任务中面临着相当大的挑战,尤其是带有OCR的场景。尽管提高图像分辨率可以解决,然而增加视觉Token的数量给MLLM带来了巨大的计算负担,这主要是由于Transformer架构中计算成本与输入Token数量呈二次比例,因此如何优化则成为这个领域很热门的主题。

直接使用高分辨率视觉编码器进行细粒度感知的成本高,并且不符合实际使用要求。为了让MLLM能够感知细节且实现低分辨率的编码能力,一般会利用全局视图进行图片规模的压缩以及通过拆分衍生局部的图像块(Patch)。

LLaVA-UHD提出了一种图像模块化策略,将原生分辨率的图像划分为更小的可变大小切片,以实现高效和可扩展的编码。注意下图左侧,这个框架自动的选择最优的切分方案。

此外,InternLM-XComposer2-4KHD 引入了一种通过自动布局排列动态调整分辨率的策略,不仅可以保持图像的原始纵横比,还可以自适应地改变Patch布局和计数,从而提高图像信息提取的效率。

通过对不同分辨率的图像实施自适应输入策略,可以在感知能力和效率之间实现平衡。如上图所示,说白了就是将原图压缩和切块一起进行编码。

Mini-Gemini由两个编码器组成,一个用于高分辨率图像,另一个用于低分辨率视觉嵌入。它提出了patch的信息挖掘,它使用低分辨率的视觉嵌入作为查询,通过交叉注意力从高分辨率候选者那里检索相关的视觉线索。

Scaling on Scales表明,多尺度较小模型的学习能力与较大模型相当,并且预训练较小的模型可以在MLLM基准测试上匹配甚至超过较大模型的优势,同时计算效率更高。

S2-Wrapper是一种简单的机制,它可以以无参数的方式将任何预训练的视觉模型扩展到多个图像尺度。以ViT-B为例,S2-Wrapper将输入图像插值到不同的尺度(例如2242和4482),然后将每个尺度分割成几个与默认输入大小相同的子图像(4482→4×2242)。对于每个尺度,所有子图像都被输入到同一个模型中,输出(例如4×162)被合并到整个图像的特征图中(322)。不同尺度的特征图被平均池化到原始空间大小(162)并连接在一起。最终的多尺度特征具有与单尺度特征相同的空间形状,但有更高维度(例如1536 vs 768)。

小结

MLLM的主要问题是资源需求,训练这些模型需要大量的计算资源,通常只有拥有大量预算的大型企业才能使用。例如,在 NVIDIA A100 GPU上训练像MiniGPT-v2这样的模型需要超过800个GPU小时,这对于许多学术研究人员和小公司来说成本是巨大的。此外,推理的高计算成本进一步加剧了这个问题,使得在边缘计算等资源受限的环境中部署这些模型变得困顿。OpenAI的GPT-4V和谷歌的Gemini等模型通过大规模预训练取得了显著的性能,但它们的计算需求限制了它们的使用。

目前应对这些挑战的方法集中在优化MLLM的效率上,需要MLLM采用多种创新技术来解决资源消耗问题。其中包括引入更轻的架构,旨在降低参数和计算复杂性。例如,MobileVLM和LLaVA-Phi等模型使用视觉Token压缩和高效的视觉语言投影器来提高效率。

通过采用Token压缩和轻量级模型结构,这些模型实现了计算效率的显著提高,并拓宽了其应用范围。例如,与以前的型号相比,LLaVA-UHD支持处理分辨率高达6倍的图像,只需94%的计算量。这使得在学术环境中训练这些模型成为可能,一些模型只需23小时即可使用8个A100 GPU进行训练。值得一提的是,这些效率的提高不是以牺牲性能为代价的。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

标签:模态,视觉编码,模型,MLLM,学习,基础架构,图像,视觉
From: https://blog.csdn.net/lvaolan168/article/details/140632197

相关文章

  • PyTorch的模型定义方法
    文章目录1、简介2、导包3、设置属性4、构建数据集5、训练函数5.1、初始准备5.2、训练过程5.3、绘制图像6、运行效果7、完整代码......
  • Python 协议和 Django 模型
    假设我有一个简单的协议A和一个未能实现该协议的类B:fromtypingimportProtocolclassA(Protocol):deffoo(self)->str:...classB:pass当下面的代码进行类型检查时,Mypy将正确地抱怨x:A=B()mypy.error:Incompatibletypes......
  • 魔改Transformer!9种提速又提效的模型优化方案
    Transformer目前已经成为人工智能领域的主流模型,应用非常广泛。然而Transformer中注意力机制计算代价较高,随着序列长度的增加,这个计算量还会持续上升。为了解决这个问题,业内出现了许多Transformer的魔改工作,以优化Transformer的运行效率。我这次就给大家分享9篇对Transform......
  • 计算机网络基础:1.上网设备与流程、OSI七层模型、TCP/IP五层模型
            你正在经营一家繁忙的餐厅,顾客们点餐并期待着美味的食物。我们可以将网络的各个层次和设备比作餐厅的不同部分。一、上网设备网卡:就像是餐厅的点餐系统,顾客通过它来下单,而厨房通过它来接收订单。上网设备必须有网卡,通常内嵌在设备(餐厅的运营系统)中,分为有......
  • PyTorch LSTM 模型上的 CrossEntropyLoss,每个时间步一分类
    我正在尝试创建一个LSTM模型来检测时间序列数据中的异常情况。它需要5个输入并产生1个布尔输出(如果检测到异常则为True/False)。异常模式通常连续3-4个时间步长。与大多数LSTM示例不同,它们预测未来数据或对整个数据序列进行分类,我尝试在每个时间步输出True/False检......
  • 大模型是否会取代程序员的存在?
    3月9日,百度创始人、董事长兼CEO李彦宏在接受央视采访时表示,基本上以后不会存在“程序员”这种职业了,因为只要会说话,人人都会具备程序员的能力。“未来的编程语言只会剩下两种,一种叫做英文,一种叫做中文,这也是目前世界上人工智能技术最领先的两个语言。”大模型时代下,关于......
  • 源神,启动!马斯克开源史上最大模型Grok,参数高达3140亿,可商用!
    马斯克真不愧是源神,自开源X的推荐算法以及特斯拉智能驾驶算法后,又说到做到,开源旗下大模型Grok!代码和模型权重已上线GitHub。官方信息显示,此次开源的Grok-1是一个3140亿参数的混合专家模型,远超OpenAIGPT-3.5的1750亿。,就是说,这是当前开源模型中参数量最大的一个,遵照Apache......
  • PaliGemma 模型选择
    PaliGemma是Google开发的轻量级的具有多模态功能的视觉语言模型(VLM)。https://ai.google.dev/gemma/docs/paligemma?hl=zh-cnGoogle提供了三种可下载的模型类型:PTcheckpoints预训练模型;Mixcheckpoints针对各种任务已经微调过的通用预训练模型;FTcheckpoints针对......
  • 在安卓手机上用 ollama 运行开源大模型
    License:CCBY-NC-SA4.0前言一种不刷机,不用root的解决方案。如果有条件可以root后装LinuxDeploy或者干脆刷成linux.正文先要装上termux.加速proot-distro下载以ArchLinux为例。vi/data/data/com.termux/files/usr/etc/proot-distro/archlinux.sh把里面......
  • Django 在模型方法中预取
    所以我有一个Django模型,它是其他几个模型的外键。我想向我的模型添加一个方法,并查看我的模型实例是否确实具有任何相关对象。两个问题:我想通过一个查询来完成此操作,但我不确定如何将prefetch_lated与“self”一起使用。我该怎么做?如果存在相关模型,有没有办法只......