常用容器的讲解
- STL的string
- vector容器
- deque容器
- stack容器
- queue容器
- list容器
- set/multiset容器基本概念
- map/multimap容器
- 容器元素深/浅拷贝问题
- STL容器使用时机
STL的string
String概念
- string是STL的字符串类型,通常用来表示字符串。而在使用string之前,字符串通常是用char表示的。string与char都可以用来表示字符串,那么二者有什么区别呢。
string和char*的比较 - string是一个类, char是一个指向字符的指针。
string封装了char,管理这个字符串,是一个char*型的容器。 - string不用考虑内存释放和越界。
string管理char*所分配的内存。每一次string的复制,取值都由string类负责维护,不用担心复制越界和取值越界等。 - string提供了一系列的字符串操作函数(这个等下会详讲)
查找find,拷贝copy,删除erase,替换replace,插入insert
string容器常用操作
string 构造函数
string();//创建一个空的字符串 例如: string str;
string(conststring& str);//使用一个string对象初始化另一个string对象
string(constchar* s);//使用字符串s初始化
string(int n, char c);//使用n个字符c初始化
string基本赋值操作
string&operator=(constchar* s);//char*类型字符串 赋值给当前的字符串
string&operator=(conststring&s);//把字符串s赋给当前的字符串
string&operator=(char c);//字符赋值给当前的字符串
string& assign(constchar *s);//把字符串s赋给当前的字符串
string& assign(constchar *s, int n);//把字符串s的前n个字符赋给当前的字符串
string& assign(conststring&s);//把字符串s赋给当前字符串
string& assign(int n, char c);//用n个字符c赋给当前字符串
string& assign(conststring&s, int start, int n);//将s从start开始n个字符赋值给字符串,如s=hello,那么n=3,start=1,那么是hel中从e开始赋值3-1个字符
string存取字符操作
char&operator[](int n);//通过[]方式取字符
char& at(int n);//通过at方法获取字符
string拼接操作
string&operator+=(conststring& str);//重载+=操作符
string&operator+=(constchar* str);//重载+=操作符
string&operator+=(constchar c);//重载+=操作符
string& append(constchar *s);//把字符串s连接到当前字符串结尾
string& append(constchar *s, int n);//把字符串s的前n个字符连接到当前字符串结尾
string& append(conststring&s);//同operator+=()
string& append(conststring&s, int pos, int n);//把字符串s中从pos开始的n个字符连接到当前字符串结尾
string& append(int n, char c);//在当前字符串结尾添加n个字符c
string查找和替换
int find(conststring& str, int pos = 0) const; //查找str第一次出现位置,从pos开始查找
int find(constchar* s, int pos = 0) const; //查找s第一次出现位置,从pos开始查找
int find(constchar* s, int pos, int n) const; //从pos位置查找s的前n个字符第一次位置
int find(constchar c, int pos = 0) const; //查找字符c第一次出现位置
int rfind(conststring& str, int pos = npos) const;//查找str最后一次位置,从pos开始查找
int rfind(constchar* s, int pos = npos) const;//查找s最后一次出现位置,从pos开始查找
int rfind(constchar* s, int pos, int n) const;//从pos查找s的前n个字符最后一次位置
int rfind(constchar c, int pos = 0) const; //查找字符c最后一次出现位置
string& replace(int pos, int n, conststring& str); //替换从pos开始n个字符为字符串str
string& replace(int pos, int n, constchar* s); //替换从pos开始的n个字符为字符串s
string比较操作
/*
compare函数在>时返回 1,<时返回 -1,==时返回 0。
比较区分大小写,比较时参考字典顺序,排越前面的越小。
大写的A比小写的a小。
*/
int compare(conststring&s) const;//与字符串s比较
int compare(constchar *s) const;//与字符串s比较
string子串
string substr(int pos = 0, int n = npos) const;//返回由pos开始的n个字符组成的字符串
string插入和删除操作
string& insert(int pos, constchar* s); //插入字符串
string& insert(int pos, conststring& str); //插入字符串
string& insert(int pos, int n, char c);//在指定位置插入n个字符c
string& erase(int pos, int n = npos);//删除从Pos开始的n个字符
string和c-style字符串转换
//string 转 char*
string str = "itcast";
constchar* cstr = str.c_str();
//char* 转 string
char* s = "itcast";
string sstr(s);
提示:
在c++中存在一个从const char* 到string的隐式类型转换,却不存在从一个string对象到C_string的自动类型转换。对于string类型的字符串,可以通过c_str()函数返回string对象对应的C_string.
通常,程序员在整个程序中应坚持使用string类对象,直到必须将内容转化为char*时才将其转换为C_string.
提示:
为了修改string字符串的内容,下标操作符[]和at都会返回字符的引用。但当字符串的内存被重新分配之后,可能发生错误.
string s ="abcdefg";
char& a = s[2];
char& b = s[3];
a ='1';
b ='2';
cout << s << endl;
cout <<(int*)s.c_str()<< endl;
s ="pppppppppppppppppppppppp";
//a = '1';
//b = '2';
cout << s << endl;
cout <<(int*)s.c_str()<< endl;
vector容器
vector容器基本概念
vector的数据安排以及操作方式,与array非常相似,两者的唯一差别在于空间的运用的灵活性。Array是静态空间,一旦配置了就不能改变,要换大一点或者小一点的空间,可以,一切琐碎得由自己来,首先配置一块新的空间,然后将旧空间的数据搬往新空间,再释放原来的空间。Vector是动态空间,随着元素的加入,它的内部机制会自动扩充空间以容纳新元素。因此vector的运用对于内存的合理利用与运用的灵活性有很大的帮助,我们再也不必害怕空间不足而一开始就要求一个大块头的array了。
Vector的实现技术,关键在于其对大小的控制以及重新配置时的数据移动效率,一旦vector旧空间满了,如果客户每新增一个元素,vector内部只是扩充一个元素的空间,实为不智,因为所谓的扩充空间(不论多大),一如刚所说,是”配置新空间-数据移动-释放旧空间”的大工程,时间成本很高,应该加入某种未雨绸缪的考虑,稍后我们便可以看到vector的空间配置策略。
vector迭代器
Vector维护一个线性空间,所以不论元素的型别如何,普通指针都可以作为vector的迭代器,因为vector迭代器所需要的操作行为,如operaroe*, operator->, operator++, operator–, operator+, operator-, operator+=, operator-=, 普通指针天生具备。Vector支持随机存取,而普通指针正有着这样的能力。所以vector提供的是随机访问迭代器(Random Access Iterators).
根据上述描述,如果我们写如下的代码:
Vector<int>::iterator it1;
Vector<Teacher>::iterator it2;
It1的型别其实就是Int*,it2的型别其实就是Teacher*.
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
usingnamespace std;
int main(){
vector<int> v;
for(int i =0; i <10;i ++){
v.push_back(i);
cout << v.capacity()<< endl;
}
int* start =&v[0];
int* end =&v[v.size()-1];
for(; start <= end; start++){
cout <<*start << endl;
}
system("pause");
return EXIT_SUCCESS;
}
vector的数据结构
vector所采用的数据结构非常简单,线性连续空间,它以两个迭代器_Myfirst和_Mylast分别指向配置得来的连续空间中目前已被使用的范围,并以迭代器_Myend指向整块连续内存空间的尾端。
为了降低空间配置时的速度成本,vector实际配置的大小可能比客户端需求大一些,以备将来可能的扩充,这边是容量的概念。换句话说,一个vector的容量永远大于或等于其大小,一旦容量等于大小,便是满载,下次再有新增元素,整个vector容器就得另觅居所。
注意:
所谓动态增加大小,并不是在原空间之后续接新空间(因为无法保证原空间之后尚有可配置的空间),而是一块更大的内存空间,然后将原数据拷贝新空间,并释放原空间。因此,对vector的任何操作,一旦引起空间的重新配置,指向原vector的所有迭代器就都失效了。这是程序员容易犯的一个错误,务必小心。
vector常用API操作
vector构造函数
vector<T> v; //采用模板实现类实现,默认构造函数
vector(v.begin(), v.end());//将v[begin(), end())区间中的元素拷贝给本身。
vector(n, elem);//构造函数将n个elem拷贝给本身。
vector(const vector &vec);//拷贝构造函数。
//例子 使用第二个构造函数 我们可以...
int arr[] = {2,3,4,1,9};
vector<int> v1(arr, arr + sizeof(arr) / sizeof(int));
vector常用赋值操作
assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem);//将n个elem拷贝赋值给本身。
vector&operator=(const vector &vec);//重载等号操作符
swap(vec);// 将vec与本身的元素互换。
vector大小操作
size();//返回容器中元素的个数
empty();//判断容器是否为空
resize(int num);//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。
resize(int num, elem);//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。如果容器变短,则末尾超出容器长>度的元素被删除。
capacity();//容器的容量
reserve(int len);//容器预留len个元素长度,预留位置不初始化,元素不可访问。
vector数据存取操作
at(int idx); //返回索引idx所指的数据,如果idx越界,抛出out_of_range异常。
operator[];//返回索引idx所指的数据,越界时,运行直接报错
front();//返回容器中第一个数据元素
back();//返回容器中最后一个数据元素
vector插入和删除操作
insert(const_iterator pos, int count,ele);//迭代器指向位置pos插入count个元素ele.
push_back(ele); //尾部插入元素ele
pop_back();//删除最后一个元素
erase(const_iterator start, const_iterator end);//删除迭代器从start到end之间的元素
erase(const_iterator pos);//删除迭代器指向的元素
clear();//删除容器中所有元素
vector小案例
巧用swap,收缩内存空间
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
usingnamespace std;
int main(){
vector<int> v;
for(int i =0; i <100000;i ++){
v.push_back(i);
}
cout <<"capacity:"<< v.capacity()<< endl;
cout <<"size:"<< v.size()<< endl;
//此时 通过resize改变容器大小
v.resize(10);
cout <<"capacity:"<< v.capacity()<< endl;
cout <<"size:"<< v.size()<< endl;
//容量没有改变
vector<int>(v).swap(v);
cout <<"capacity:"<< v.capacity()<< endl;
cout <<"size:"<< v.size()<< endl;
system("pause");
return EXIT_SUCCESS;
}
reserve预留空间
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
usingnamespace std;
int main(){
vector<int> v;
//预先开辟空间
v.reserve(100000);
int* pStart =NULL;
int count =0;
for(int i =0; i <100000;i ++){
v.push_back(i);
if(pStart !=&v[0]){
pStart =&v[0];
count++;
}
}
cout <<"count:"<< count << endl;
system("pause");
return EXIT_SUCCESS;
}
deque容器
deque容器基本概念
Vector容器是单向开口的连续内存空间,deque则是一种双向开口的连续线性空间。所谓的双向开口,意思是可以在头尾两端分别做元素的插入和删除操作,当然,vector容器也可以在头尾两端插入元素,但是在其头部操作效率奇差,无法被接受。
Deque容器和vector容器最大的差异,一在于deque允许使用常数项时间对头端进行元素的插入和删除操作。二在于deque没有容量的概念,因为它是动态的以分段连续空间组合而成,随时可以增加一段新的空间并链接起来,换句话说,像vector那样,”旧空间不足而重新配置一块更大空间,然后复制元素,再释放旧空间”这样的事情在deque身上是不会发生的。也因此,deque没有必须要提供所谓的空间保留(reserve)功能.
虽然deque容器也提供了Random Access Iterator,但是它的迭代器并不是普通的指针,其复杂度和vector不是一个量级,这当然影响各个运算的层面。因此,除非有必要,我们应该尽可能的使用vector,而不是deque。对deque进行的排序操作,为了最高效率,可将deque先完整的复制到一个vector中,对vector容器进行排序,再复制回deque.
deque容器实现原理
Deque容器是连续的空间,至少逻辑上看来如此,连续现行空间总是令我们联想到array和vector,array无法成长,vector虽可成长,却只能向尾端成长,而且其成长其实是一个假象,事实上(1) 申请更大空间 (2)原数据复制新空间 (3)释放原空间 三步骤,如果不是vector每次配置新的空间时都留有余裕,其成长假象所带来的代价是非常昂贵的。
Deque是由一段一段的定量的连续空间构成。一旦有必要在deque前端或者尾端增加新的空间,便配置一段连续定量的空间,串接在deque的头端或者尾端。Deque最大的工作就是维护这些分段连续的内存空间的整体性的假象,并提供随机存取的接口,避开了重新配置空间,复制,释放的轮回,代价就是复杂的迭代器架构。
既然deque是分段连续内存空间,那么就必须有中央控制,维持整体连续的假象,数据结构的设计及迭代器的前进后退操作颇为繁琐。Deque代码的实现远比vector或list都多得多。
Deque采取一块所谓的map(注意,不是STL的map容器)作为主控,这里所谓的map是一小块连续的内存空间,其中每一个元素(此处成为一个结点)都是一个指针,指向另一段连续性内存空间,称作缓冲区。缓冲区才是deque的存储空间的主体。
deque常用API
deque构造函数
deque<T> deqT;//默认构造形式
deque(beg, end);//构造函数将[beg, end)区间中的元素拷贝给本身。
deque(n, elem);//构造函数将n个elem拷贝给本身。
deque(const deque &deq);//拷贝构造函数。
deque赋值操作
assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem);//将n个elem拷贝赋值给本身。
deque&operator=(const deque &deq); //重载等号操作符
swap(deq);// 将deq与本身的元素互换
deque大小操作
deque.size();//返回容器中元素的个数
deque.empty();//判断容器是否为空
deque.resize(num);//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。
deque.resize(num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置,如果容器变短,则末尾超出容器长度的元素被删除。
deque双端插入和删除操作
push_back(elem);//在容器尾部添加一个数据
push_front(elem);//在容器头部插入一个数据
pop_back();//删除容器最后一个数据
pop_front();//删除容器第一个数据
deque双端插入和删除操作
at(idx);//返回索引idx所指的数据,如果idx越界,抛出out_of_range。
operator[];//返回索引idx所指的数据,如果idx越界,不抛出异常,直接出错。
front();//返回第一个数据。
back();//返回最后一个数据
deque插入操作
insert(pos,elem);//在pos位置插入一个elem元素的拷贝,返回新数据的位置。
insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。
insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。
deque删除操作
clear();//移除容器的所有数据
erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。
erase(pos);//删除pos位置的数据,返回下一个数据的位置。
stack容器
stack容器基本概念
stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口,形式如图所示。stack容器允许新增元素,移除元素,取得栈顶元素,但是除了最顶端外,没有任何其他方法可以存取stack的其他元素。换言之,stack不允许有遍历行为。
有元素推入栈的操作称为:push,将元素推出stack的操作称为pop.
stack没有迭代器
Stack所有元素的进出都必须符合”先进后出”的条件,只有stack顶端的元素,才有机会被外界取用。Stack不提供遍历功能,也不提供迭代器。
stack常用API
stack构造函数
stack<T> stkT;//stack采用模板类实现, stack对象的默认构造形式:
stack(const stack &stk);//拷贝构造函数
stack赋值操作
stack&operator=(const stack &stk);//重载等号操作符
stack数据存取操作
push(elem);//向栈顶添加元素
pop();//从栈顶移除第一个元素
top();//返回栈顶元素
stack大小操作
empty();//判断堆栈是否为空
size();//返回堆栈的大小
queue容器
queue容器基本概念
Queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口,queue容器允许从一端新增元素,从另一端移除元素。
queue没有迭代器
Queue所有元素的进出都必须符合”先进先出”的条件,只有queue的顶端元素,才有机会被外界取用。Queue不提供遍历功能,也不提供迭代器。
queue常用API
queue构造函数
queue<T> queT;//queue采用模板类实现,queue对象的默认构造形式:
queue(const queue &que);//拷贝构造函数
queue存取、插入和删除操作
push(elem);//往队尾添加元素
pop();//从队头移除第一个元素
back();//返回最后一个元素
front();//返回第一个元素
queue赋值操作
queue&operator=(const queue &que);//重载等号操作符
queue大小操作
empty();//判断队列是否为空
size();//返回队列的大小
list容器
list容器基本概念
链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。
相较于vector的连续线性空间,list就显得负责许多,它的好处是每次插入或者删除一个元素,就是配置或者释放一个元素的空间。因此,list对于空间的运用有绝对的精准,一点也不浪费。而且,对于任何位置的元素插入或元素的移除,list永远是常数时间。
List和vector是两个最常被使用的容器。
List容器是一个双向链表。
- 采用动态存储分配,不会造成内存浪费和溢出
- 链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素
- 链表灵活,但是空间和时间额外耗费较大
list容器的迭代器
List容器不能像vector一样以普通指针作为迭代器,因为其节点不能保证在同一块连续的内存空间上。List迭代器必须有能力指向list的节点,并有能力进行正确的递增、递减、取值、成员存取操作。所谓”list正确的递增,递减、取值、成员取用”是指,递增时指向下一个节点,递减时指向上一个节点,取值时取的是节点的数据值,成员取用时取的是节点的成员。
由于list是一个双向链表,迭代器必须能够具备前移、后移的能力,所以list容器提供的是Bidirectional Iterators.
List有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效。这在vector是不成立的,因为vector的插入操作可能造成记忆体重新配置,导致原有的迭代器全部失效,甚至List元素的删除,也只有被删除的那个元素的迭代器失效,其他迭代器不受任何影响。
list容器的数据结构
list容器不仅是一个双向链表,而且还是一个循环的双向链表。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<list>
usingnamespace std;
int main(){
list<int> myList;
for(int i =0; i <10; i ++){
myList.push_back(i);
}
list<int>::_Nodeptr node = myList._Myhead->_Next;
for(int i =0; i < myList._Mysize *2;i++){
cout <<"Node:"<< node->_Myval << endl;
node = node->_Next;
if(node == myList._Myhead){
node = node->_Next;
}
}
system("pause");
return EXIT_SUCCESS;
}
list常用API
list构造函数
list<T> lstT;//list采用采用模板类实现,对象的默认构造形式:
list(beg,end);//构造函数将[beg, end)区间中的元素拷贝给本身。
list(n,elem);//构造函数将n个elem拷贝给本身。
list(const list &lst);//拷贝构造函数。
list数据元素插入和删除操作
push_back(elem);//在容器尾部加入一个元素
pop_back();//删除容器中最后一个元素
push_front(elem);//在容器开头插入一个元素
pop_front();//从容器开头移除第一个元素
insert(pos,elem);//在pos位置插elem元素的拷贝,返回新数据的位置。
insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。
insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。
clear();//移除容器的所有数据
erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。
erase(pos);//删除pos位置的数据,返回下一个数据的位置。
remove(elem);//删除容器中所有与elem值匹配的元素。
list大小操作
size();//返回容器中元素的个数
empty();//判断容器是否为空
resize(num);//重新指定容器的长度为num,
若容器变长,则以默认值填充新位置。
如果容器变短,则末尾超出容器长度的元素被删除。
resize(num, elem);//重新指定容器的长度为num,
若容器变长,则以elem值填充新位置。
如果容器变短,则末尾超出容器长度的元素被删除。
list赋值操作
assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem);//将n个elem拷贝赋值给本身。
list&operator=(const list &lst);//重载等号操作符
swap(lst);//将lst与本身的元素互换。
list数据的存取
front();//返回第一个元素。
back();//返回最后一个元素。
list反转排序
reverse();//反转链表,比如lst包含1,3,5元素,运行此方法后,lst就包含5,3,1元素。
sort(); //list排序
set/multiset容器基本概念
set容器基本概念
Set的特性是。所有元素都会根据元素的键值自动被排序。Set的元素不像map那样可以同时拥有实值和键值,set的元素即是键值又是实值。Set不允许两个元素有相同的键值。
我们可以通过set的迭代器改变set元素的值吗?不行,因为set元素值就是其键值,关系到set元素的排序规则。如果任意改变set元素值,会严重破坏set组织。换句话说,set的iterator是一种const_iterator.
set拥有和list某些相同的性质,当对容器中的元素进行插入操作或者删除操作的时候,操作之前所有的迭代器,在操作完成之后依然有效,被删除的那个元素的迭代器必然是一个例外。
multiset容器基本概念
multiset特性及用法和set完全相同,唯一的差别在于它允许键值重复。set和multiset的底层实现是红黑树,红黑树为平衡二叉树的一种。
set常用API
set构造函数
set<T> st;//set默认构造函数:
mulitset<T> mst; //multiset默认构造函数:
set(const set &st);//拷贝构造函数
set赋值操作
set&operator=(const set &st);//重载等号操作符
swap(st);//交换两个集合容器
set大小操作
size();//返回容器中元素的数目
empty();//判断容器是否为空
set插入和删除操作
insert(elem);//在容器中插入元素。
clear();//清除所有元素
erase(pos);//删除pos迭代器所指的元素,返回下一个元素的迭代器。
erase(beg, end);//删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
erase(elem);//删除容器中值为elem的元素。
set查找操作
find(key);//查找键key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
count(key);//查找键key的元素个数
lower_bound(keyElem);//返回第一个key>=keyElem元素的迭代器。
upper_bound(keyElem);//返回第一个key>keyElem元素的迭代器。
equal_range(keyElem);//返回容器中key与keyElem相等的上下限的两个迭代器。
set的返回值和指定set排序规则:
//插入操作返回值
void test01(){
set<int> s;
pair<set<int>::iterator,bool> ret = s.insert(10);
if(ret.second){
cout <<"插入成功:"<<*ret.first << endl;
}
else{
cout <<"插入失败:"<<*ret.first << endl;
}
s.insert(20);
ret = s.insert(10);
if(ret.second){
cout <<"插入成功:"<<*ret.first << endl;
}
else{
cout <<"插入失败:"<<*ret.first << endl;
}
}
struct MyCompare02{
booloperator()(int v1,int v2){
return v1 > v2;
}
};
//set从大到小
void test02(){
srand((unsignedint)time(NULL));
//我们发现set容器的第二个模板参数可以设置排序规则,默认规则是less<_Kty>
set<int, MyCompare02> s;
for(int i =0; i <10;i++){
s.insert(rand()%100);
}
for(set<int, MyCompare02>::iterator it = s.begin(); it != s.end(); it ++){
cout <<*it <<" ";
}
cout << endl;
}
//set容器中存放对象
class Person{
public:
Person(string name,int age){
this->mName = name;
this->mAge = age;
}
public:
string mName;
int mAge;
};
struct MyCompare03{
booloperator()(const Person& p1,const Person& p2){
return p1.mAge > p2.mAge;
}
};
void test03(){
set<Person, MyCompare03> s;
Person p1("aaa",20);
Person p2("bbb",30);
Person p3("ccc",40);
Person p4("ddd",50);
s.insert(p1);
s.insert(p2);
s.insert(p3);
s.insert(p4);
for(set<Person, MyCompare03>::iterator it = s.begin(); it != s.end(); it++){
cout <<"Name:"<< it->mName <<" Age:"<< it->mAge << endl;
}
}
对组(pair)
对组(pair)将一对值组合成一个值,这一对值可以具有不同的数据类型,两个值可以分别用pair的两个公有属性first和second访问。
类模板:template <class T1, class T2> struct pair.
如何创建对组?
//第一种方法创建一个对组
pair<string, int> pair1(string("name"), 20);
cout << pair1.first << endl; //访问pair第一个值
cout << pair1.second << endl;//访问pair第二个值
//第二种
pair<string, int> pair2 = make_pair("name", 30);
cout << pair2.first << endl;
cout << pair2.second << endl;
//pair=赋值
pair<string, int> pair3 = pair2;
cout << pair3.first << endl;
cout << pair3.second << endl;
map/multimap容器
map/multimap基本概念
Map的特性是,所有元素都会根据元素的键值自动排序。
Map所有的元素都是pair,同时拥有实值和键值,pair的第一元素被视为键值,第二元素被视为实值,map不允许两个元素有相同的键值。
我们可以通过map的迭代器改变map的键值吗?答案是不行,因为map的键值关系到map元素的排列规则,任意改变map键值将会严重破坏map组织。如果想要修改元素的实值,那么是可以的。
Map和list拥有相同的某些性质,当对它的容器元素进行新增操作或者删除操作时,操作之前的所有迭代器,在操作完成之后依然有效,当然被删除的那个元素的迭代器必然是个例外。
Multimap和map的操作类似,唯一区别multimap键值可重复。
Map和multimap都是以红黑树为底层实现机制。
map/multimap常用API
map构造函数
map<T1, T2> mapTT;//map默认构造函数:
map(const map &mp);//拷贝构造函数
map赋值操作
map&operator=(const map &mp);//重载等号操作符
swap(mp);//交换两个集合容器
map大小操作
size();//返回容器中元素的数目
empty();//判断容器是否为空
map插入数据元素操作
map.insert(...); //往容器插入元素,返回pair<iterator,bool>
map<int, string> mapStu;
// 第一种 通过pair的方式插入对象
mapStu.insert(pair<int, string>(3, "小张"));
// 第二种 通过pair的方式插入对象
mapStu.inset(make_pair(-1, "校长"));
// 第三种 通过value_type的方式插入对象
mapStu.insert(map<int, string>::value_type(1, "小李"));
// 第四种 通过数组的方式插入值
mapStu[3] = "小刘";
mapStu[5] = "小王";
map删除操作
clear();//删除所有元素
erase(pos);//删除pos迭代器所指的元素,返回下一个元素的迭代器。
erase(beg,end);//删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
erase(keyElem);//删除容器中key为keyElem的对组。
map查找操作
find(key);//查找键key是否存在,若存在,返回该键的元素的迭代器;/若不存在,返回map.end();
count(keyElem);//返回容器中key为keyElem的对组个数。对map来说,要么是0,要么是1。对multimap来说,值可能大于1。
lower_bound(keyElem);//返回第一个key>=keyElem元素的迭代器。
upper_bound(keyElem);//返回第一个key>keyElem元素的迭代器。
equal_range(keyElem);//返回容器中key与keyElem相等的上下限的两个迭代器。
multimap案例
//公司今天招聘了5个员工,5名员工进入公司之后,需要指派员工在那个部门工作
//人员信息有: 姓名 年龄 电话 工资等组成
//通过Multimap进行信息的插入 保存 显示
//分部门显示员工信息 显示全部员工信息
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<map>
#include<string>
#include<vector>
usingnamespace std;
//multimap 案例
//公司今天招聘了 5 个员工,5 名员工进入公司之后,需要指派员工在那个部门工作
//人员信息有: 姓名 年龄 电话 工资等组成
//通过 Multimap 进行信息的插入 保存 显示
//分部门显示员工信息 显示全部员工信息
#define SALE_DEPATMENT 1 //销售部门
#define DEVELOP_DEPATMENT 2 //研发部门
#define FINACIAL_DEPATMENT 3 //财务部门
#define ALL_DEPATMENT 4 //所有部门
//员工类
class person{
public:
string name;//员工姓名
int age;//员工年龄
double salary;//员工工资
string tele;//员工电话
};
//创建5个员工
void CreatePerson(vector<person>& vlist){
string seed ="ABCDE";
for(int i =0; i <5; i++){
person p;
p.name ="员工";
p.name += seed[i];
p.age = rand()%30+20;
p.salary = rand()%20000+10000;
p.tele ="010-8888888";
vlist.push_back(p);
}
}
//5名员工分配到不同的部门
void PersonByGroup(vector<person>& vlist, multimap<int, person>& plist){
int operate =-1;//用户的操作
for(vector<person>::iterator it = vlist.begin(); it != vlist.end(); it++){
cout <<"当前员工信息:"<< endl;
cout <<"姓名:"<< it->name <<" 年龄:"<< it->age <<" 工资:"<< it->salary <<" 电话:"<< it->tele << endl;
cout <<"请对该员工进行部门分配(1 销售部门, 2 研发部门, 3 财务部门):"<< endl;
scanf("%d",&operate);
while(true){
if(operate == SALE_DEPATMENT){//将该员工加入到销售部门
plist.insert(make_pair(SALE_DEPATMENT,*it));
break;
}
elseif(operate == DEVELOP_DEPATMENT){
plist.insert(make_pair(DEVELOP_DEPATMENT,*it));
break;
}
elseif(operate == FINACIAL_DEPATMENT){
plist.insert(make_pair(FINACIAL_DEPATMENT,*it));
break;
}
else{
cout <<"您的输入有误,请重新输入(1 销售部门, 2 研发部门, 3 财务部门):"<< endl;
scanf("%d",&operate);
}
}
}
cout <<"员工部门分配完毕!"<< endl;
cout <<"***********************************************************"<< endl;
}
//打印员工信息
void printList(multimap<int, person>& plist,int myoperate){
if(myoperate == ALL_DEPATMENT){
for(multimap<int, person>::iterator it = plist.begin(); it != plist.end(); it++){
cout <<"姓名:"<< it->second.name <<" 年龄:"<< it->second.age <<" 工资:"<< it->second.salary <<" 电话:"<< it->second.tele << endl;
}
return;
}
multimap<int, person>::iterator it = plist.find(myoperate);
int depatCount = plist.count(myoperate);
int num =0;
if(it != plist.end()){
while(it != plist.end()&& num < depatCount){
cout <<"姓名:"<< it->second.name <<" 年龄:"<< it->second.age <<" 工资:"<< it->second.salary <<" 电话:"<< it->second.tele << endl;
it++;
num++;
}
}
}
//根据用户操作显示不同部门的人员列表
void ShowPersonList(multimap<int, person>& plist,int myoperate){
switch(myoperate)
{
case SALE_DEPATMENT:
printList(plist, SALE_DEPATMENT);
break;
case DEVELOP_DEPATMENT:
printList(plist, DEVELOP_DEPATMENT);
break;
case FINACIAL_DEPATMENT:
printList(plist, FINACIAL_DEPATMENT);
break;
case ALL_DEPATMENT:
printList(plist, ALL_DEPATMENT);
break;
}
}
//用户操作菜单
void PersonMenue(multimap<int, person>& plist){
int flag =-1;
int isexit =0;
while(true){
cout <<"请输入您的操作((1 销售部门, 2 研发部门, 3 财务部门, 4 所有部门, 0退出):"<< endl;
scanf("%d",&flag);
switch(flag)
{
case SALE_DEPATMENT:
ShowPersonList(plist, SALE_DEPATMENT);
break;
case DEVELOP_DEPATMENT:
ShowPersonList(plist, DEVELOP_DEPATMENT);
break;
case FINACIAL_DEPATMENT:
ShowPersonList(plist, FINACIAL_DEPATMENT);
break;
case ALL_DEPATMENT:
ShowPersonList(plist, ALL_DEPATMENT);
break;
case0:
isexit =1;
break;
default:
cout <<"您的输入有误,请重新输入!"<< endl;
break;
}
if(isexit ==1){
break;
}
}
}
int main(){
vector<person> vlist;//创建的5个员工 未分组
multimap<int, person> plist;//保存分组后员工信息
//创建5个员工
CreatePerson(vlist);
//5名员工分配到不同的部门
PersonByGroup(vlist, plist);
//根据用户输入显示不同部门员工信息列表 或者 显示全部员工的信息列表
PersonMenue(plist);
system("pause");
return EXIT_SUCCESS;
}
容器元素深/浅拷贝问题
STL容器所提供的都是值(value)寓意,而非引用(reference)寓意,也就是说当我们给容器中插入元素的时候,容器内部实施了拷贝动作,将我们要插入的元素再另行拷贝一份放入到容器中,而不是将原数据元素直接放进容器中,也就是说我们提供的元素必须能够被拷贝。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
usingnamespace std;
class myclass{
public:
myclass(char* data){
int len = strlen(data)+1;//计算传进来的字符串长度
this->data =newchar[len];//在堆区分配了len字节内存
strcpy(this->data, data);//将数据拷贝到我们在堆分配的内存中
}
//增加拷贝构造函数
myclass(const myclass& mc){
int len = strlen(mc.data)+1;
this->data =newchar[len];
strcpy(this->data, mc.data);
}
//重载operator=操作符
myclass&operator=(const myclass& mc){
if (this->data != NULL){
delete[] this->data;
this->data = NULL;
}
int len = strlen(mc.data)+1;
this->data =newchar[len];
strcpy(this->data, mc.data);
return*this;
}
//既然我们在堆区分配了内存,需要在析构函数中释放内存
~myclass(){
if(NULL!=this->data){
delete[]this->data;
this->data =NULL;
}
}
private:
char* data;
};
void test_deep_copy(){
char* data ="abcd";
myclass mc(data);//创建myclass的实例 并用char*字符串data初始化对象
vector<myclass> v;//创建vector容器
v.push_back(mc);//将mc实例插入到vector容器尾部
}
int main(){
test_deep_copy();//调用测试函数
system("pause");
return0;
}
STL容器使用时机
- vector的使用场景:比如软件历史操作记录的存储,我们经常要查看历史记录,比如上一次的记录,上上次的记录,但却不会去删除记录,因为记录是事实的描述。
- deque的使用场景:比如排队购票系统,对排队者的存储可以采用deque,支持头端的快速移除,尾端的快速添加。如果采用vector,则头端移除时,会移动大量的数据,速度慢。
vector与deque的比较:
一:vector.at()比deque.at()效率高,比如vector.at(0)是固定的,deque的开始位置 却是不固定的。
二:如果有大量释放操作的话,vector花的时间更少,这跟二者的内部实现有关。
三:deque支持头部的快速插入与快速移除,这是deque的优点。
- list的使用场景:比如公交车乘客的存储,随时可能有乘客下车,支持频繁的不确实位置元素的移除插入。
- set的使用场景:比如对手机游戏的个人得分记录的存储,存储要求从高分到低分的顺序排列。
- map的使用场景:比如按ID号存储十万个用户,想要快速要通过ID查找对应的用户。二叉树的查找效率,这时就体现出来了。如果是vector容器,最坏的情况下可能要遍历完整个容器才能找到该用户。