首页 > 其他分享 >逆向案例二十七——某妈妈返回值解密

逆向案例二十七——某妈妈返回值解密

时间:2024-07-20 11:56:31浏览次数:27  
标签:逆向 pako 加密 ungzip ++ 解密 返回值 CryptoJS data

网址:蝉妈妈 - 内容营销与电商增长一站式服务平台

有会员会返回所有数据,抓包分析,会发现返回的数据进行了加密。

直接搜索找加密位置,因为这个参数太烂大街了,因此,直接搜索decrypt

 

找到疑似加密位置,断点分析,并打印参数

 

貌似是个AES解密,传入的e是加密的参数

 

r是最终加密的结果。

 

复制代码,先运行看看

 需要找到u函数,和ungzip函数,进入u函数,复制u函数。

现在去找c.ungzip

 

这里面需要y(t),看样子要解决这个对象的问题。

这里有个重要的提醒,一般chunk-vendors的文件,都是用别的库来生成的,因此我们可以搜搜百度,看看又没有库能实现这个ungzip的功能。还真有,pako这个库可以实现这样的功能。

不然直接扣代码,会很麻烦,需要 扣y函数,然后模块i,然后添加原型链

 

 

直接用专门的库,改写代码。导入pako库,将E.ungzip改为pako.ungzip

 

现在来分析登录页面的密码加密,我输入的密码是123456,所以一看这返回的值,就知道是md5加密。

 

完整代码如下 

const CryptoJS = require("crypto-js");
const Pako = require('pako');
function u(t) {
                var e, n, i = t.words.length, a = new Uint8Array(t.sigBytes), o = 0;
                for (n = 0; n < i; n++)
                    e = t.words[n],
                    a[o++] = e >> 24,
                    a[o++] = e >> 16 & 255,
                    a[o++] = e >> 8 & 255,
                    a[o++] = 255 & e;
                return a
            };
function get_data(data){
    n = CryptoJS.enc.Utf8.parse("cmmgfgehahweuuii");
    a = CryptoJS.AES.decrypt(data, n, {
        mode: CryptoJS.mode.ECB,
        padding: CryptoJS.pad.Pkcs7
    });
    o = u(a);
    r = Pako.ungzip(o, {
        to: "string"
    })
    return JSON.parse(r)

}
var encrypted_data='2MX6fyZ8qwqF0R6pkbhMB1G87AKtGBVxQxhNWT+r9EMYV1jkMlnlrQojV9riYLO+yfsm8U73EJqHRxxyNTQCW+OYpDXMeUPPOoMKjfVDt7LfZukuGPOBltBdTdapH2hljtPlUZDMYUacdMcreWOWLWK7/SLAZgPZXFZ9qmusocUy0kPsadsqUswMo4LCRv/15hQEAxJTansGFX/ibTJyM1m1GJ3r0x1i+Ddit1tfttqPpZXvhB7oD9M0/c6atuhKl7Y24v5DtCMyTN9u/YCFZfHJKLJPqpGlK+9oMGeFqeMtPa4wMb9Yo0fKG7VrLdbEtSqCYZrh6ZKnA72vuYajXyyKMhPH8JG2pAEy4wEG0pn8+oj1l8h0NoUXIjA17ds5sQARqxQ8v3Wr7CU5WyfhHuRuCa3zQaub8k9pgce54Fq61Y7nvSz+VLdbBlTJIIED0CoMdwNmyTDIddS1GumxU6K0PhjA2pMm33lZGdtzNa6t0qVcMmU5aul3PgNcTxfds8ycbX0kQDXgXB55ZtQicGpT+A26gzSgW42+i4egTRkOqrqO+puQZp5xWDd0b7MXBHYNcGx2ybi+qLqa+Axh8Hb8tf8RlrAiEU6WGwxkKH7cSkjKG4rePR/QZf7igfajG4vgpP4Q2LcdREMjwpfpM9w+jp53bRhYsAh73CUI8Le7sD0GrVe6p1woEAMeYRyYpz+GiiN+tOKwmwnZBiLa65dUFcgFv99u9dGpME9TmBKGg1RS5ev1mKw2qkhzr3mOOhjXeQ6y+eXRnYhJcOtBGzv48+jPhij+SgUl5aDYuTgDZR5QHRxJ7t7TmGyJotGfwGun1SkTci7XSuIDALf+1c/LZR0nT8+M2UUvALjTGvwtlL6zRLCW5C+vIzmPUBhKcFmCl1/9AFx7iUrFWbGZnQEuK1kqQOcbi9biOacUrrweRWtZ+fM8pMGEUDg+oSQQKfDTZGVuGYRI+8iSIzoYR1IajiBdUj6Mawl1tgMhduvClMOTxEVZriHfpIzYs/cWx/hkTFbCE9wGJODzPg/6plo398MKn7YphX3kjuFA0YPFcqMauPwOb6UTDxpf4qksYYJs+7gXZmZYTtBm7JCMGBuhpU7quW6p/FnIKYO4bfVwoC3nvGgm3sRhI31GlOrDoXS/OlYraw0Et//bAzjnc56JUBPUBr+WZVPhVqiQDy1QNMAMjDAoZIqS3+YJrY+LV0CQ7ACURieLf4SmvYSWdSYH+km0IWO8cZtE4zrnS6EJehVGZ6GbF0Fmb0LYXU1wHst9zXhV84fM7rIB76Rvq1XVxytpt66dFb5PInhvNWnVgcB5uEQ9uP+v1AeUXbaPsWziGtLXwbiqMX4h0iw/BQ4DRkl756MRDrlYZnwCNcvUK4S9bHFS0TMpNiYBE0RjTtghDY0gbQJvq2xMkXlo1cywl2RfSWuGBTYVxhtWUdYpW1dqO0eTK8qc1TLDB58NfepDGJgk1m/91P0gbSzinOSmtZFEKNvkI/sNbnKlNOGBkHeyKqwduVo6a510lSpnjTcChH2TbUbAT+AONecGIHcBrzcDDMtitS4KY/uJfDSd+dXFCOpEpd5szkZhd75GffSHX8WvSpa++WFiT3rQkBfOoL5vd5yz8suLaYQvYxlKpLaJFZSioIliXrFFBojDchzAcMHqwihBn3NfmDt9GYuaMrUt2C/wA2Nnk1+z920mNNh8giaJy0wWNOxv4wIJEPf03PdDGfc5EBe8M7e+LdsMlAbBrJiCkuS2iHu1AX+P9ng5HIpKRrx+baDP8Nl1mywdA6yNzJoyyalFXMj7gre+2529sv6dEtUNpjTA5/xg9gE7NqmAPd+1uwgAv27WMF9tdxV8UCEkEnzVckZxjxFW3Bv4plIphvx89hN4xN++bgNgrLMeAAPIgvUaVqTELQ+aOhX5vq4FqmiKyl8MkaUkV2maG84ctfNAgkupLPSKn40yarHreuL0QIpkAikeYRPjMpCHPMUEJzMZmlB36IPBu6eWRn2VyMe8e3/OwZqkxvleiblw/um5R7y4JQUk5KM/8Cu1k6da5we3rWGtx0ujL9mzJIWhF6gwz5A59JM73AVGzlOaNLqqgDceRkYECAaZ6vMyO8cGNgZgB9mvs3ostoIea+PylhTO4ldmoj0SMYZglsUAjnJZB/BJglQAde8Lv/Sfi+TZpAsZfcWS42txkg4jQBiQzbh2cy/aZW/719+PHjXf1B044ZsbN9Aabkc+ywiBq2TkpzANBiZkceSMjVDayvR4kJLOBNsqZKpctM0FPj/V6GwyLJODp0nZEVHVXZaNAbq/BrzdG6/mlZkmKseJSe1BZDjmlOmRrlYXU2jazFlwXRUBWYtsRNwU5InqmuZWIf22mWZkqNqw2fWxqCyjC6vaw2eweEslOT9voWNu85xk6yhvK5etAP8NPX/VwnGzq3Og6/qZ94XvQJXGEekutWdIIuZWKyKsbho1GSOk9H0Ww5MQ3NZAXKVhoIKmk7BysIlhyabjEgRdYjz4TNTBI07MEFAveODEWPeJaXEMx7PlwUgrnmevsHvblkD3Cwo+UBE0NbEBOUzbqhp7eroPNW9O9RO+2Olwvqcs9bd38QL7+qjiY57PCdtuf/cMQlwI7JaRrtogQyUhDxnwqRat4R5K2KIRKm6GVJLmVqO+y2H4ooVxFufnbG+PqXi9N0nSI/gSgQ+SF29ckBtu+pLPdjeLqYp6S3iZNFQBrZJk5N7cAlq5YvRibevx2jZRHuP05si9b2DW27pxLe60uDck4ofC+5TIk3Uk2Cbh0VaKbxyO6173SS0nbF82NDsqeAVJbW0ap8acXfbLuB+nOA4cvJvMApy/rStZmvpRgNcyVf1LkBUBZmmzeqBmSMlYr40z237pnf92DTaA7xAlsub0GKuAtzGoZRx3WpsCISX/OIqvaX/jmcQeP2mhh8QhDNVhnM6NupSmLwevw6x1DFyfUo99mP3bl6SXK/eNv6u8jgU+fA8Lr3M83Zyr/rNJgV7Oz1qX1MjL/p3k19bZT09Xni7FfHPt5K9tVK6vZBiOqiLvSLOS3ksYDmez6FRxPBNB+9V66feOaZnGb03AEHwLqI2DnBvBkTwrgUva3on0PxD7jNEGNII0LG4wdofjvOklU3aVLtMNVqtbGt003YwqWcCYIKt9xPA2WnQ6ijm6dGTFSOqEGdfv5FAYTI+2aXaoHItOPZNzmIglKtI9pjonZO3uNE9SK0VA4mXoISGVf91O1/eGhZPmB6Qx9Y0BjwRwXHtwjlqb2zMhWaErZU5yeIkAz6YwaL9r5mgFCdw2+joX4z7GtmsZLnMAi56qH+tXuFEs6onGznhxga5AUBmCUjUe+GZj7ZDe78G9IdYWNCyLYpRIoYdtZ81NslYOjJp0PJQ33Cy+KMjRbG/Hd3xvcbqEc6CJh9QtCZxJTMfTlVbO8fhmMCbbjGbaZ4mZSby3Oy4kHfgvJjaqKx0r7DMf94HzuE71sXC66bx3lkeTHnHUliKfvEwltsL7UHmZwcPcPajGyeV0Co9oTIL5kNkEgtczbWsBC9j6QWV/6SSman9YOy11/clxan4phMpKBl+vY1JYjTODASzEU8RW5T/4idsySV7jNgq+OTQlGQBBxyk4/bW3etYgIQ/G7mb5LvFeKk30WuKtwmUJJaXT116m72zabkRAXBaueYoAa2IOmCGmogbFUZqqYqF+tbLFOUhC3r0V2T8YuRAmmXt9upUVg4/Fe6kRgsqPv/aIgK+oHhU+2xB79Jumhhy9CPy9sNfphp2NYBOxlbJfm+urlHfhHyaLx9SutTzpeROmB3ktPv6SYLRO4D5wdwoy9/0xYx2nu2+3dhG+9FUqGaRIlHMiibR36wDVX+wctNzKNA9maOuJ5RBjfsb7iPmFFJJ3eok+ridRzAcc7msOQ6cwExQn5NW/1BlHunAAPq4me5Cp8L+5O756Uwa6cjF4wPWto+N69IQRHGHSGu0SQ00jZw2t/Cgea5OaRh3hRt8jS2jiUMcqLqve2ei8NznfSVpmb10SNRfAtySi/NdASsL2WNJgvaR/G8jbir8fSX7v6qwc9VE+TqdNHGFxBHEoGkVN0pseyPqvnCZ33M9C+NggB3xO558fICNDxfz1KaRNNf1xSqj4LAckAjTlNx6i4QojXwMwldU17gY84j8HkJZ8xPOcGX5QpjMl4RrKZajq4FM+AmY/T4ErNg200bcJO6OU2BD6Rw7PHGcZ3WKdrNP7FbnnTDu5oPUHwArcW1gVdJQrjzSbl/kRVz63Vb1JMTM9ouBXYx6fW+YItrTRTIPP4tyLHMqGG+meTRrgBx3Dgi3Wpg7irqfxoP6O/dhoOobjTLMsnHGRfG/UbG2Vd3YUXQPUwbbrAAfghMBSYUWvPYn5dMsLaZt/uBN75BkCwS5tA9Kx94Z4p9puBdyueQWs3++29QkP+Byj8GCGeAOn3NhgQVWxSc8/rSkcfZ+qVHW9TLLi3ElL1NnWGxZVkCKjyVaCICUSO/RQsgFF6ZhkfZDsLScToG2wyXWtt1zl0HzpZRz4iPqfhSmvg94tCt8GeAQShaShciR2kmG1aVl/0lCNZpwqXWehVJfpKRFZmw4BhgbOAz0ScDr6mFw83re3qNWMEIN0QUhdppQo6REBXB4xjCfg2TX5ZsaVBjLsTFMHhbBKwBWFHZu3LoR2fmmnvOTjFF6y1vx7K1yMkkP3ZZIC1K1yT/l1/N+RskMeIhayZaF0Z9dAtLDf2htGekItJlSB4wCOEbh9edvY7zZMD7wPavxVNp9fEg3vEMytRCuCAPNO14UnUJdJGooDOa6JXxvXLRcT0QOfdHdzscUMeeCLt5CkXAVm/bvFXXYgzEeI7gJce3SxC4Kjj2/zzPQlulkSvGcODLMkM71CAmZ/0Sfs183JQb/XN/0lUPVmloncgoP4tbwD6XR4qoUj168pkT9L3lalBJ7PeZ/jbQDfXtYvioHYLgYIDvkfIA2KeVMZAGzjnbjJVdx5Hw4H8+fh+Q3CTKGTS8yaFEU3gzgtEhakt1DsKej3HmXjxkGybTnbJ8/LRXIbSbT9B+Tl29UNpoALYORJXles50sQp1nt9IWix/ZnAi5mcXnePvLpM87rnAAHZaGffmO4x76wiU2fPQX3Nlb9AICavbckXJjBb9n22SWpfKKFeMhaH4iy1EoNJGc58sBSwF5vQEMawRB6I4PN2RUG/Alf6Huy6KV6JHEAhUCk8kI7q8/1Kf/ftSdPTnuwiSHOeix/S6uRqpjskoZKrtff99AEEJgTjNcmA/GhhlOEXDk/Traifhxlyx+q10nLbwfpvKjaT3HAX/O4foQzq3dNjehiBnWo3PvaX+DKX1avbzo1RfooshhlhcvuKaXui2yyhtEY6WJ/3Ql4QwEe9+uodwn8eSmUooum2Rts1BJUjz+w7oTiaY/7btofMiOTbdb71xli091d/8Wj3Ot+qoCjX/Wjd51SguI24O44C72f3e19FSAi/U0CQSnYx0kXvZ3KRZL7L0utK1r6wKQfPDY90OP3F+ffx1pIvah/dGshks1RdzcTPragqrcYjYeruugTtRiM6SnCfm5kk3IZbsBCbXniC3MXdx/r0gpqTEcn39Z1cmn+Ct8L4xeXJ3hgX3oGCSRtnQyg4Gc0/eRD5ljzBr8RRBESjCVfO3FRNgtomGtr1m5B+JEl9EJrOQWHEpvJh47nbOT8lf2V7mdbVAK46JcIEBXTmrUK8LQr6i9ZxP6LCVfJYcABt6L6VndS35xLtBr0UBRtiUCKw7KePS7QuPp5ZRGQLjKP3AGygmShtYMP7rrVu86cMqbcOGNdf0+FeRjwshSymieVAyDP8gWPEc9oLAol35S5NZhK1zndNlkMSN/mv66o/wAQ40k1yjBYF9nICzFEJ5dXdN8GOZ3FvaWgKiykDmGPPfg2hNWO7Tbbd6+bdBlJcwVFZBntiKR747s1kajrBkzU3zCU7xXskywoBBidPv3nMYoVP7l3WuWW3lE4eVw76xlVfE3R7jZnQyIGsHcrcjASA2WTx3arcAvVkTmLGEiIaL+aG7vqHisDiJpyNEI1wKNHO2IJ5lfzpTpbIs6x7Ni6N8cfgbwABmXbL6zy3BYPHfmsglCMOPvKM1pDifs7KlBFFVNXIwamynkzwxS4qNzpYg+0y83KwfoBHH7wW/6pDER+EJBGNpm2vmvCaJ1rOqKpjZqrvbW8B3Aw+OazQPpsLv2hgP5TEhewAWAkOAFoUBG7IujhK3IuwuDRmotsIBZMgma6w0Q7SDf89JSzup3c05Mydp2hv0zItTX+4MCvZ2OLJL7tiCm6k1+c7g9dudiPhXpbtDKx3a39V/j44wTsvp2qZn8Thq2wELH2NEBtNuyQSEuzRmZ3MmMl+u+ec0D09PhRZh1bAO3540BWO+HN8XrIyP6qf4AA2ZPpm7HYhx8BUpWZPWVCDuaw1fssZAgIQEV3QGmw2o3e3nXUWjxZLRGGxiIlic2XFVF46GnIqVGgmYSUmBKuUyL3POiyYQ9+HWNr3V1QL7rOyOTZSSR7iwOYVsk6Kq1SjEbQYjdmhM0PC6OLJV80zu4z73r0nis7gmLHZR2+AWBLYF+tzwyysMasdb5FDkFV3Kf9HPImzzaws2fEE9OcrrGaWZhAgzlaQ4F24I9DQmojwpWYU7M21mafrzZ8WrxmIvpJTtAZYPVfZjkxPi0UKQEc6xRP1miohX62uE4TFw/b5ZwvrN4fYxa2+sTLFc4a0UEwrMBrGLOGAZbfET95rpmtm+UFtaNi1LSbpsMkRKV8jKGH4MnMD0pAdLM+PqAFq/phu0j/QODpu7C5Lhd2MKGr8noxj/62UFNUXxTR1Ho6Q3Cs/YBdeZXx0pe1SZM8qli0JIilSsYB2tFYOaqg/kw6MvjgzAeN9ZQAwULpvj9J/P5MwHSmGcP812yBgoPwDpS8JVfMHvQ3wbspXhWyeDJlgUHEmBb3bEhiBjRFNFy4VqksCIv9YXnsfHYeu5PHGoWel16mUZrMxgoSTIGaetMjiHNGZevAGz5VC7bPVW8s+ZOeo8zAlvJ3UfJEz8/6zNLmKXszKCItsuunifUk7bMt4vo7gJS6oV7NgVOCert9yC1vZjhVMFJNRONhrJEZQCaHQfGDPMtQMNGMhpyEwS9MkVa3mem9sY32gTTNh5gqnQrWQpJmtHbhmLSviXCIn+HuP8gF+DBykSPRgoPp9+lshyVm31A1OG7c6R47lHp9S2EWUuXpuJy0anlTpi8nK8mCTQ0A2gThvcI51OaltgvtuKvQBRo+9IOlp5yVvx7BeUXWM+o+gDUJscv+06fCsiGlQGZadipV2FmRn9AmL+0DmZGJRW3OtdUv2M/qC05NlRoJmlMKKA/PJzu2ixapf9No5CGhCBIZJnl1gBBBJQ1pcGvchZPxQqRjlfrf4deIumZ3Wzs4xErjeKOvL6G1uI4T55d7MKN6KxigtezrI8c8REVe75s7K1oNdV7QJEclXm+bdRUEz2EtXVVTHsF6oUqB4ofgDmR51Srg66USROXj8/FL9dQhbOzQNxgJSkAdVE6HnlfHcAXgp16jSoM5M/G0tHmWYeczixXyHtOkaUtzBXUbiJ9Z/FrRreoc9xMLxA8UqyUlFDIKlHln9G54SlHs9MV6ArHZXPGORtvkIMm2VjO6Yhm/CwoeKG5B0hY9egUlPiijhZ4I5hopjGP9DorW8jEelmLyBj2rXaIZwbRoPsl0jZIRONKdgE6TmFtihnvQ6uMgZcS2Nf7UF9BrP16hV+OsVWB4880SCW4O1F26Nl6hRWI7OSS7oTX4SViXk5ZyouqOyWzKvykHVybpxYCDkFnso3m74RvrAWJBgPZ1WG1nt7IvHmRpMVnS+frl35IlX3nDY3P+nLyOoEjAQfy7cLZzudp2+7EX+0S+45+ki0M4aRP6pAtz9fKCH6oBObUxWVUL0+uZ5h8tQtT/WXTV6MylsvGcVqU1PUgJQ9qiNdIwR+F6s6cvtkjd5l0JU4skiO6Xa+f+YuMbXyJWGrsm1r1MTY9IAN50GPU8KlfZYg/gdRxhpnwiKti1S7sFLE4s0g/9R8nuN9THUHqYJJHE7WIlFuyfy6mBeNuWM3Gja9kaHicW57RVgGgMjrEcFW/28U8Fi5jhrKRzMcHm1wDME9lYe+97nzic4h8HDLoadgF/qK3FWqziDpwv+bU09y1ao/vAiXPilAEgNGWnFcmApqYHSe3gO7UFGQe57JBteHjI9XDtNRGm+VcovgcZ/nZhMSgC3N0ZF1uXPS/hIUUABsH63lXOrnIMQJOewuyKyx7x9iajj94GATagjVIONvx6Qv8NNIRW6Wp1Po/DlI7Fh+RI2UwvRQBk7+UxwYCWPuwJFx+ig/tjQhBKV/0XQsrbCG2f7zbZpo/VZ0i1ImQp2fT6mesVelItWi1EEexEwwWlqfwgg/T2d5eM6jX9F4wzmOxUpizXSjtRQ8x+D6eywslbu1Pdqi6RYazXiwC6gmN/lNNK+rA9uzDFqjuIzSkOU1ln+NYeQkk6YSy/4MZZKNa+A2rShRmVJc34x8eIs4jALZ/Q7FhmECvdotFzahtqXrHhH2z5QaaE+JxKegmSV7jBxYEnF8QJVnSmRpLUQi/gCzu4Q6TdrHdTXNY0tBh4dBhjDaZQEN99+YG2ccw9/qX8MUGuZkzoyj731v6WuU1675ig4i3CcM17q8g7X26RLdx4+zDCutzR2Mvvqstl760qxFAj76JQTYxAFUFOfkfNvwid6/S1ZuU0l0InQB+ERvyO714gpIkwnjEyLJ86Oi7fPxJOxdYjc/hZ1XJvFzuPGx5w5NOhuzmGTgCU3HWWvYhKnc4eGTAsaLSJvZTYRMOrSY6xZt16X9WTzi71LqetSv+Kj1mEl8loI0A1PojVjwvyk4LlOpbioQl2SnmCUWrJYESjEnN+pgsL+3ICQ5MfzED32msJ3e0xtmQLEu3ncT1OhrLYzHNt20/51wyyzUJ5u3xlpsH/iCEKGG/c8JI3f+mk9RXZgNW2CXY3EEjmKmbo/NfxRHKdW/IvKHdPvHLHFj3qs8NtsE8pda7gYoBKOzxUakPqXJgZ9Gco40ERHQ5xxFi8+vpNTPzBZZ+lbWAn9DT4J7JAPKRo1Px+Jtv6KNFYqOIVcKlmT+kezQHCK2ybc7345ywU9yvxv6fKxyR0F2u/0avAHp7gJT3qRt+VcFPNj6AO3yk884oePnuaMVJOL/0vo39dieKxKX92pT892MyhiQR1CAi4GGJ76NpJIcwZ+0NrkPCvbNRa4elX5QrPGmeNnBcLQbPaX3qQz8ISMA8Hc/VL4rL/QPyKejz8JNFoOc1MNmI2kW5UwtnfEv78o1HLDAhEwL4EYjPguFLu/qwpBLKlhAaTFGHY5uDGuSxDjkrT30pev8qXLxUt6zHwToZUvD/W9K76GbqDL67mAJuPfly4g1e9y37Ld13gZixI25BlEtGz20Vtq3UtpN6Haer4asZJAghvCdpVZ06dd2Nn+dFFKuZrk8K0vNGdJEhhBXEWscGDP3HIOKlDL7zMkwtYi7r8MqSWn3cSEGWlqoNGb61/952SvzUXlHpA5FVQeLi1wHaBE6Gyk1Irp4siB8Dd1v3aXvcTNkJeZ91s9LIV4UUc+19WNlVd2Yh0f090ghOeGfpgRFBUoDeRaqBnPpSfkE35IO6N64JIsgfHRw9bm7J7AH7iiilqQQK30TRsJcepdGPQLO+biMcLtwcgvBNttmNc9kdmdwwTaQgbJkUz3h7YrgPYC1TEHSUJO5lMnxrqiYlL+BkJwDMHuHm8AZrNPlg0G6ES50c8/i/fyazExDXEjt4Ks6jT5vzVZm2eK4Y2p+T4KKCN4e1krWGNdSDE4p8PFijZgx7T9V5NSFXRceY7afbP4WH9Ki7+Z86TrizzXaL/dRbpocbbametJBzkkpWfO9b893bT09uWWT/AIePpeTyBFOUGzlKfj+gaQEvq2R1payl73ZitXGt2JjculbG+MxF6pZr+jskiGCnr84YLEzIOC2ulDgkAqtHp0AzRKQZG5fYd37iHhajY7mCGkLQmCKdcZbeNaxwcCawbCRm1EVWuNMn2VicRsM/xqMmfu4V3tCHd7SHYP6Bmkhl9679SGi5G00zKgCnBzJSP9bihUVOpFp0Lbiao7D9xCcmeJrEPiXxGCJ+SxnjZgwAuY5G1u4+yhKdpKFtxF7UmfKJw4gwx7XgseENfjzQz3KxGulHfB+TxKL6wLMG6l7qKWRD0Tv866TIAzLpuF8OOTY1l4JJI0OQB1Zsw/f3TgpC90VXNq0YL77f99b+fRXtD05cuB//Z/D8ohlZe5/jeV3cbzmsx9MgGX4h5rbaJ2HHHRLH8X5jNbsKF8b5dcNHBu/UEgGqTlw9DYfbuYLtgqlrbgyYeGl1+rByxkooa8bQ+y5PkyTGT15v3ZaWqwnshsYr7ib7QvLP94Iqyh0ilnE1rlApw1Pur0Y/Qb/VpEsdB8gq79KbmawlkuLA24mdioywkHXlPBvx01A24QSKsx5MwW6ZgwN6ckW2HZxrdJZVCjwxKgQ4fDZGjh1c0GtgDpmZPP/ErsgzOWnbB6WFVxNnuBQZhpcZ0vjegRqNAqeFmmvctCLxOXc6O7GNBLCO4fjuSA8iD030QZYPPU5SrmRsvMzHSsy9o0i2qXRNnq6xA+bC+Go1PbUhYCcoU6WnSJnojCUy5WFjhzP+ncGKjDRoE1q5dd/7x1MhcMqtUh5kejIV7WakdVrn0mqCnN8M0s5JXQ3VdR8i9isO4ZzdZr3Y5/VqmLJGXsWbiw8UR4OeKmMFhQ/eDLrfS/t8Y4GegXmD2I3uBGKl/disGWQLHoO9e3N1sqEulw/F4+Cx2y6jOCOFO75BQScfXvbIIvx+8ojZGr1C6GSqvYHcxCYjj3ydnWKOW+RiliP5ugEIwHfEV6aZPUDSGLDhJCKN98dDogbDV/tlGxlMyCkrzCHXjBEGEl75bssLyVbJwfM56pyThU0YHMdSyVZbZ99/1eaoOzxTdYuOQ4sIKa9ildIwaA1rB27jzL+Hp0xquHOBlSl3UoWgQuQxmviJnXjls6UcZlxRM9RZZgUXPIwYqm8u5qI+OmZQ3bqpplDerdSjT6pu0HW5xqEn1HbvLwrypQF5HpHjpYHLSrxljKsa6pRHKWiKYf7/vfoyUCXSmPEglRFagbtec8jd/C4fXoqfDTPQNp7BiU0zDREt2TrgkHbcXXhONdgpFgNJ5DzCnTcIYCNWdDiX1ZNHKSp2ry/ysdcQ1qx9he+glEDdE8xuPS72dzG/QZRMtB6p6UhUUkn5EEyGLl1LasusR/jgnfua9XYGq+u2oyJiJN0eWaPTh64V/3hKpen7iaR8Q8YDZUDH1Y5f6okEF3eMrSk6mt1MhUwbIrINnomoIsdGTwMovk74FPq2nO6nb8gtt9u8uId7weNw8dv6b+tlx7AiWCjBGg5RJU9CxY/qok8asjopqgU7NpOlOkUdyUEjUY0ChNxAuwAGStKo+K6NPAqw8K5za4QZ5fy27rhDanLOg0XOhx3890gD6+QhGqqlE7M/o8RYo4NcyjvIDKImF3rFf0pXM1mN5/CQbuEmFoM9l0yZSi6cCyR45v+Ys8mOikBUblfpuy6gqJqDc/YWbaFqAntLTd6pO4HsJ+4PZHKbZBcozwjzvVuAAldIBK1GMkZNe+a5IJ44FKV0nZKSgTvl90gnpJWS/GCGdpB6FWlEZDIUUCe52N/h3xiDlvhopcL0yIy7tCP1Ta+OYW3NuEMy64ewjIfsv/ZBOsbKg59g0FIVL0OFxFZq2m1SmSMFHih76lsr9PorlfynXEWzgd6HssE3qnMr23aYIYY0ZBU5htb5FiyCVwSF1uc1pFkCFoNlmRGSXE3Ng4MXkAODqONp2peo9w0FPVT73MDIuw4Y+AIV3094ni16d44KGudI9sdmNXa8rPlERl7boYU+tvG4dBkJxnlltu/68O0/PMnmS8fbVDprHdL19xG49E1tolxHVDdV8ExTJH748CkgFKMc56gW8041aDVLvZZG+iwLnGQOKwa1JjpSa19LdNx+PYgs3dgKwJXIDYbtzxjZwdus1zc4/5cyNBmL+FIATj5HrNmzL8oAZeNlawTkwV0beEMWSJtdlpeVTU1My6kFSF+cfb2VGOESeE24UatTQK0REapAqI/n34IAdJfKtrCOBF2mSmEq67l4HpsLrk2OstrkJipIvIKjbo7qQAxjPNtNBWkl5IGGZezMMFHp8Svt/YAkiXi9zQs8HCKknct1xRRNJxNhLxxiEOmWQxCUtnpNdbO7YKeKNOcHyp5/inw/4GXizNCA4WPRr+B1BQ200I0efKvxyPSwnGRiGvqeYBNyAIZSsg5cltT6+ZhY8i/Jjw4ZFrJhYzP8PfAtFEMGaLyP3BYkgbvhiCMkR0Pk0SGUe86vOp3KER8xo7f8SXiWFxZyQgqpI90pxB7x/NCn+0OTvv8YHqPBdiKqnH3qIFfjkIgpdfEfCjrbcJnqUqHlylt/xGqRnsD1y0ZnHPYku/ZhbZUGiDkZN8CNnrHIaM+mt6zQVUB87Eb3HXHGbbHksZ/LrFEVGpG129HYXL6aJzAYcQHasFny04GhzmNYeBeaueAEfuyIuyT25OMIAgwG5v7hf6SjcvaAyZn15dy3EsotXKUicSWRYH40glgDCDV3tIRCXVupJKBrzw9krtDnM2v4KEeCnIbzDWNKhL67uT4TbXZFxYzxvUCflgv2Oasgopkwsk0VIUjmSAxHAn9FDZJIF/z1axprXNQ/zOM3mJxdbY6QdaQuD80tM+iUwTiS2bgpIcHxrSFEcE8782ZPtXDYCyVMOWifGqlL4e42ZS8C5ERoI7U3JNQn45TWQzJLhKd9T1EZ2QE0nP1LV0Wz/+tl2OZEkoytkhaCdnJuJPSiir4PJaWamoOINgSLKl4yukLzdrVQPB635m0ZgOUYWRlIlurbEMvyRg26AFpAxW72KzW86uMEcgYVz2IvySbbP0lQmksmRzgjyDul0DlCtdfYEWSe7hUCNT0Q2olxEK74gCfYsz/Ao1pUcAIQN3wRFCz+H9KGRDpMyemHan962U5U+Jb/jjbdULmHbQeMeRx3U9oxeXeTEON1s9CPqtUlydSb1GZKMvQVXcQ0H4BlEwlx63OXCtZciwSnOc0fxTSoHgB+zO6Gk0G/SaLxMjuZxmpWX38kF11DNITHY7jccpESXulZej0pR7sRYIk+gxOMhXndIUO8dbQpmh4q1GzqxgAt0X/14UmmQYK2a9HEKrDqc8tDKHYeWIUsB8CAcRNtShao+Wpuot6SzWKu1aWm7Qm7SMi3jK32hVhjJ0zWuXrQPZa53TPtOLPV/8SxOLG2yUjQf/Ys5gtuKc8Z5pVRtVMS0y1wqi4kKmgYsYb7IRLRK1W4VQIPu54hKW8gXWGnOJ3nsWVouaixDHWIFlRJUEXEITjW129P9ahBzBdTrTziE3I3tZ0l3Mrg3nmxzx9brnSX3EzRgw9II2mk9H2UO9Vrfyb5qsr9lGCAxmDcY8sM5Uu7W7/ZOSUjr9nBvx5QCbEq1Cypg9P857GpHB0xS/OrNH9G8tpMCgaYUMoyARY/d38L+Kk+KdLWUDpmF5TJcQmJrxSSBU0RSAbmCiYxpcFzGVHsC4nrNoJgt2y/f6yHa6tBr6/v3s9ePFQEEQet+1Gt1IQgkt0U9sulD+YPyhxH3XSmOw2lIjiDKvlI0b2UHIAiLzQbG/e37l6cLsnK73aif327Vf62OeTULAAev3y58cxwgvKHBkmvMohLaKufB3TT/SJqUUizzwNA4OJL/mNsZ/BwkMXdqgT4QLowd3DeX+gmI7tq3sSYqH1b6Xzbn6IwxLQANpTGA1AU05TgX5IPxWcx1uzRV4ctmStXphLKOXFltYkYW/ir44KdNIWJkg/DKfGIaa3kITpeAUH5vDy6pSRznbRaMBI15gn9CZ0lm0FgyYLW1q+vIcNxrpF1oankMIPfLBrIvVrYUvKywt+igPUc2G8R3EDpKTtUq9SxE3DUOWnvjYjqP4oVqdE7YzF2dbsasZu1rKwZBPsrUv1IKeRIo9GMj/SjraDjse6lNG8YZO0SG1LnjanuzKOWv9ofqi+6M6hAtSgWqdZank3xNpKUu+E9+xrv5qam+bULQXvCKny6sMpi8a1UHCqdtQppinx3YSA8G9/Y8qE+2y5fs9tmQ7+tx73XfzghRtvsc/TqASZZafEG80xSaYFUbDT5fP35a3aOYaen+6u0OkomjgL0CMdg6c2fRb8ZuUz3bStAEEVKU0ZLBvwtZFo3O6jQxCSHZtYz2qgcqSvxislRStkhb5WJURh/jLHHX9b/t9cWxd7/0z8VI05r3Q6aBeTjr11TNBKSYci3/F8JmuHKXenx4/hLiZoNnXScFAg2WxemZMmkw06TmyzZ8cEoNSgDWDYTZ+AcsdOU5P66OFAg1aCrKXOf1cvIdVZ5TW5KxlcDtcJgRWeCwJWfTy5VxcXgOS4vWJNq1SmN9/axFUm8RITk8AzdmU5mK9aojZYg5s2GU69IoXcv0OPTYOZA5ZzbGvlNiLZ1JUEpna4NsEl1oln6jzXFjdJw+CjRYQ87GOC2JDAfLnYZ17AGBxI3A7xkurq1pskgLSwt3ct24qfot+kbJ6e7vnwbtO8FwkSlwkCBuUZ4glBau/2UUWccB3F2d6mMaSSShvyPVIctZctT1uds48zkVoVK4qu8QBwWtfXEa3kazMh3qzhuy8DZxTmKfOBQ3jfVKK5vBrtgpDKqENnmd8h5jRUafBrW0ZxbON2gfFWan9GezX2E+9YMWXUSgx8uHqZ4GpVWKx3lbc/SOCPOp/SIhvrNHns7f93NJ76WF4c0bPQk3tKkgVmNfwhbx5s69lN+vqgWQkq+cITzi+ATKrfp+ZfU5Rq1fT5Fol/gdg8svP6CbzmrN+qmCfZsj5dG7G5Jai42Uz2CwHxFzNUdOih/cxpE10xDeppjBu26xHccfeUf+u/cDCWd40+xssM1XSzETttDMOyBNOPtPahHjArnQQJt9aICvc757TUCTlAufwGg6fm5A3aSRKqV9vPGIr6vw6xQGbCQRWSu3FNdb9X5ZMKBiZyFMYhaG2dJ/Y6Rt8lZ/X4kWqSIl0RNqI2iFGBdZYcir9Uvf1uI6mOShP0bAjnHTdQQ5J0T3S+YCwG4swhRXzbNi015cUWbbvCgmgHt3QMcLCrE5McOcZb96XxRit7O2qdRm0dv5wnCk9LOrnprekXsY+LZQqjHTUgv8ixqtXs5yfD+pDD81NOKf03GZDbWSicqj0ceFd61zOx+OiuHr61FOYxzYUY8OsVD5fCu9GwhQvVKrOw7y5narA5SI9KH2YouzF3efEgoTivpFYEK/CLC8sMahAYkUfMohUMR7gYwOADWm1B0LVy9iDLvRmDbLHqGvKtVrbzwJXktPCmKxIXdXaeKyf8HnVlQ8WKd9SNbrYGgKVoOMQSx/fTlvIQjQNCZFP200MFM0Oau0W05y/0maq739qYJK46lJiv/z1u4D8ypKJ1SgcsQDmDcNbZflBGS/Y+80jJcJh/1J13/R88vsGvofcxBIfRtbIu3Gl4MZjmDLa/204aXk5h+6bHIgGKAdU6gLS/C1BI+ZoUYrEOGEchfQ+3Ha5BVF/n+TmBvCMfqWihDPyyam6urgtmXPkhcsqSBxwZIghN+giB4OhF3+zTgAKp26vYDYIH3TKKA66xSjer16TnF7aMBjx238HwKxiMDg6XFw2daGOoH3fflo2t12WYpJg0bJ0oYdXF2fwkaKBxcPAAFQzENDXAV6NnuxcV/jyP37QdA1WTV54iLTklpqeUEb/iUKgu/g5U9qDWenoNH3xtoKdyuT9e+5njvzXMK2FKSewx8DZsUHkBSOWCibznJW3/7W4mrLo9H1kVQqdBGstaOKE3GIFM0tMNcqeqEsSL0m0gq8erbYRUfPySZhQVZsKaxmKzz66TD2UF6pcQJ+iBFUQE5bYObFQbZE+f5dzjNR86fJ2h63Mq1IrCttBmq8aynqSs61Xd62aV6Pyn/YzcJHfTHB5Rv9/1Sg8/ArNDOGj89BK7M7bXdVrpV794tGGvgwYuwN/+WWSYaW2V4EQ5utISnMxUvc66WPAyF60RdLLxgYVaNuv8dzoI9nQfftqGwFQhCznnD4XJ0obGdacyHs3ukNXLvmLtkLyPC5El5z/gX+2ZkacmjrR+hW8n/PkPFsg+vzqOpeLwrw5oAjKuF4K/I4CD5ZQ2RpSWkTJcRvfAwbU8Pn68fVSHSk4h/H6h4jb9aq4s9MzioZbXQ0hCx03mnnpCvMts5jy4c/i7cHMY9GWtXySGO6h+8DjrUx1cC81w24z3ljU7azClHbaEBPyEA3PMcUx/IL/xgan1r5jZLD3+TNeNHUnsWdZCDaeFwQIsv6/rNcZ8csy/J5IiDkczupD06Bc/zl+2bfAAqyrVIdBqt/vbReXSONVuDalJbFuNHpBi8oYnqrdiTU3rVN59tgWJT9hgtFPLQhtiPIqAYaYgnfBkyC5PZGpHF+cID68Nbi4G+FeNX9aRfHFa+OML+9464gPTcxKAT3b8drtfy12FTXJ5q4U4d08CbZZkazUJmLFumaHbv6iRgNzzDXmen74DwEC7vVQHe9Dn8d/iymJUPOtMNgq2jLpyHbBUMmbczoaRP45QOCzNSgj43fs5oA9OtJ6tbfqy5wPLD9m9OqgL+rdSUee73hS8W8OXhVhMQts4abN9OQ6M5sRGdl3kUwdkeUK/kHFZbMAqFrVqIKDwT06t1afqfwSverqqv8oycWut1WYEgMYIRMAyTj6fVgueOX+0HUFlRHj7pKn5lpegbDgWzhZPzazic5Mf7n74z2LsmOzS4GZF/oY819NxegI8y/WSeqTsratcNXxJwhN038DyUh3YujRA/Ofk2OX4Fj3KgaZuIRqif6BfzMXtnCpCbeQXExH6zKDF7UraRYwPGXGPsNRbQJbiveKVHpV61arjpozPXMaAcCiSGVQ3LXLAT0FXVQDrqg0+cunmmt0SJYmSp0fBVFlvWeL40Eu8mY31UHZNbFRjs2KY4I73td8hwF7IQxduwDqwkB9O/hO9IHw4dP6qgQwvcUBPQYx1YU7jRFXDAovq8nYU8InMPiJ2EVNvxLl6c4htR5h/0BhRjHEZBJaBsCDQgxFNHyY2wp9tpGlaHQxTS4hX+zGZTXpMcX/FAboc6GSOpYA2tbDu5bdM02TtbbRArb1sQ2D9zmU0b1u4mCheDd2EuZULoxrMEuaOsrSg+fKC7T5l3nvxK7uye+ZOfhL976swgBjGRv8FBdrY/hcdZHmx12ErUPpD1XdAzscqpJLqti9nG4My4h/UWtMhtURw8idn5wlzwtjcMke6+Mun6rFnibBvGnnaX0QG/2DHl0Y9A0NDIHGDTvkOnCrOUyzf7YYZtm+DywNie3qljyvPFDVYikHcEz+p+bIFoFB2YAkl6sToHyxUIRPqa11a339ipJpnqNEk0Tw+KAEZww4WPoHhyVvJlR2bJK46fbs6Z2s91nhcAyJPpmK/e6yTiFmguH9wd/jj6VKxTNhRHdYrV4S+1Fud+0WQg4CjzclBP4TLJe3wH8qkALWfoWaMkiuPSgTEXMAhPsWHWHqhX/i+AdnTV92ugcx7K2Z3k7ELVijX1mJX+QR3DdpkHFd/YzGr7XwgkVJH7JaNqOucIEAqQZ/PewUtncH9azXYyi63a3JN8dr8IgqWiusxqZL4W79JqvTT1Ctk+ad1ShoBs7UL7nJ7BnlZpNOyBPU9gBfGaGAAKFj8q257oTTGxEtZcnVrUuMxEuWi7EKiwsCSslIPV0XHWIODxGXJbZTa3Wz4Fg/Zo1hCvFwrtaNOh6t2ZZfsmmrlVwJfQmyUzzquX+Cqa6jbKw3gUwUMbWSMIHc+Xqdnp5y9RY4XkmvWbP9xGcN1B+3sB6jap5leQTUkDT+bMfzJPOgOw0yxy8j4X4m/JTQJXCXh4qQh0X9McH26zlt5ZpzlKs1mGO5cGhtpImpJWBsz/ZL9RGdE0YkGcMFirP54QfSdXlAzob95crnLelo5yRtGz5V3wA/kMLc1+HqFWTuazfFdWO6La6yOnLBMyIHo3yTPSPO6SqlUK136G0ihJ7pUZZKuOjkC4f0Kz8nx2QxcZ9FKltudZmpy+tSRv2BrLHx6w6977CYfBVjE1EN5Vmnyx5dDw6XVCaLLbM8jimgnXwCGvFn4ayYdVRdWr23x+pssUKh/xoEqNEj9HJMRI+KQF+MCSX13Y0iFEw6jAtdTmH8rL3I7AMGiFJJNmlyw1j8HBaclcQrCvNZPUaZLTOsL1pXOaDZ0Vomj5VpXH7uBazevWQCxCNpzBjjl+/Y99V2LAdN427YKTghDU+suCvLHlBFMDMmnHqdVdDshqfK/oNvTk8I1PJvxY7S2s8xxuJpNf3H6YjQhPQ3f8nCk/ATTAOlp46a6Rpq3MmxUeib3MQkrR/xPxJ57i07LH1HmwkGp+/PNJuO6YTSnVqWb5+9rEaTxRySdfu25/fe1VVxWMdF3vD9uCD1LrjqQcHvxjKRPB7Pt3tpFggqmE7FXMWGC/xBUs3rei/VP9ug88Hc+lo0leFZGm4dapQTw2T4HhrPZI13/jGb3FBlEp9WoAtcQE6ncxBCqFOCTWJRSOZaT4Pa+bImVMWlAZh2PuLNoGGFU3lfLfxkv3vtyLIKd4Zqte7ERN28k2c3SPLI1MqZ3kjnBwbKP9Ntkd2c/WOTmel2PFZ8yM2JXlmJ2Q/NLAK9XjO15bqdBuN1ZrPxcEbJF79k+0nFIGZjiD/BLctWHijFwjYhu7AIlWda19cYCGH+0w8VGcMl+W0YjbK3qAOs7ZB3yahjKIeK9QzK4SeiewWB0Ffz+1/zBe0++hBL43JmtueCKjBL3WG8OHV4XY05RkIU+qePS9a/gcSJwIlKubDE4WCGCCYjWgwEYHC3r7zAzLGh4yRqhM/u7EGYFtN0UWOgEfazX5ogd+5xDgMFAXWT1O85TOxI/oE82h5N8oY1HUSdZUY3Az0zzjTwWGv8OhRFvwKUM7LEe5g2SlwK4QnMhHdI1A0O9CON9+oH2469ioheLSZl3d+t6anaan9xqTFenjRFvxoUcxbCU/vlWAaw7Y/Ii7Z/3VMWBt1jq43MF0sANePZaVxnm5w/Dr/Y/Ya3ys/TUGItBroRWkwkOoESfmHU3SZT7mRXhy+xlgEdXT2N0EZBF1pGruXJC6a1dq77V0lAE8NqC9CKmliT7m+JM0myrtRBZEUQgjhTYk2sU4dTrQZ02JFc9nGcF4PCi0Fn55igRi8C4P9ZseRi35zm5Vnzt7ZJDhXYxJrMPvnSpSfNvcdzXZ41mcMyMFHxNtPtGvoqqx7PP3oIHfo3RnhFJYkArh7ZzxnW0LI0YCSN8apO1Q40F9Uu8HtNj4fmw8pET3Pj2Mh0f0VMe+26eCy2jhAJeNAdzLJ+MnJWE+ovAE7GZaxv9mf8Qt7TmQuarlxiK2blQ+2W96ReVqeW6sFyQRYOoWsar4mbw72WeN5Uo0ugLqDX69VK3K+j66+3P+tjs486esvoxpvu37OspsSV833VjD8PRZG3l4DNjQKUish0DNZRymYqs75lVXcR2Zs2GjmvmiV4J+rTIfa6CVpG45WGmxgyOEktOHJ3MhTD5m5Z8yNoMpW/G5gZElb0aSmBtsXgqYUuvYTd2nzhS6mbRO4KGtQNaAPEk070Altu5lEkSQzdGBcJzBVHJYzNlPKt2Gqwf6Ki/TjVejPlln54PZezXvjB7Hi/ZE6aoXvW78Pz0zUNSnTn7TrwknYQlOQjOKAnMQfPxVX054KTniCVtZkhltSQij76nKV8Mta33G6aAoSD0wYTAHLwE8FuylG6yDtxh8FSssHUfga2DygGagvoTLkFKSeuyID3PWoFFJRXnynGw61j2xoe5iprJTAld9Fyse9qS5cpJsUDUt9mqXS5jcJhORUfTKMx+0MNxLSXEyGzv01elgc97eS/EcxY+Wnc7mfE/FTxuLKJbwtd2/B2CFGrS5He/eTg6ebC/WnGifwl3KNAJkQb8+lms4kWA5vT4Pyao/kNzGRHfgBNaTEM6uaPf+ZwwpaQ3TO5XsxTlxDjLQEYI7H/7H6xeDLsv+nqdAndqlcvtpKYTOpTNmEd5ncMclVpyOjZ8D5180qSABLhoG2Mv7raeTHau5k7qH2p5qtVc+NoEfoJdRaBaf2e7Oo2ltku11/lbH+b4LH9wgM9rxYBCZ8VcUr0FSpR3lp+v8snOJb0mySy5oRCRVIp9aPu0FW3SdukjU/0dAwspOVPYt3OESoMORwfNDypuhSRJve3cM6BjCQribGEcH1OjpU5zeeq1eBJW3WCu0CHp6SqeK5bJ2Sry6zEJuTER5SFfWv5x1v3VXfAJpxDx2H6XyU5BZXfAwX2bQkmD4SAyBI35U3P04GLnWrfJlYgCVQMnlvNC2Vyjt4YU2m2ReMSr/XtQbbjN2stFltdIc9El+mtGmBdltG6oEnr7lubF6BVWxuN3fKpsZQ1+bAs8i58lLU5yy5z/ZiR43JaN0uoFpeG66E5AJgtIUNtiRNXXrU8EVmyZ4NRGUKfodgdtACB9Anv0DZl4mWhDu1JUQAg2Xucs78ZiruZEII7eZd+rybAum5iEF3BefQ8SzADhlA2y87dM0wi24orJH7siimCg2ir+72lkfUtBr0ZVlGVg2DVmNlD879QdJBXlNPhF+3vyfSIC35TFLKNcU1sFwHMPOxy/qoBBDRgdli5LU/Kj3lGazEA+PM8XjNi+1VMyQAQmirC3oyNSZ9lRfCKY0yI4A74HLUgaGOMbK08XjxCT0ewtLmYXCsHUJCfwjLSYUHKJgYgEigYN9GUPyUXch2L2b+r4AwqgCTo0zdW6XvLOdMyo/qK27y5/fdDBgxtrYkfEWtHI4RaP650DeHPu1N6qa2bkQP0/SjNdGlmtOhqpdLIILiIDAwAPINYsLwCTtdvydLK8618tv6RmrFwfABZEqI8rRnYqr2y8Tli4NJW1sfh5f31kfqkqPRtsNOcna4aopEg/juGRMVr9WUutjLwZM1/10CdNJ7AafCzfqnneFuSH4lhlxXo9y+H1tWGzgW4vHcP4vfJ1NcUdeUrLa87fczn7/BYR80ICDSSBZf2sod2PfezRyJ1Kr85vUXKbSFCZLbi7jayntmX/7+hLectMIScgfjkn2g9Eczd8tfT1VOXNLt1GpXrRRQQsI+ReXTMwUqZOAgfK1UleZj+FpkjR/Z5OzhsKCXJ6kbBAsle0Dndk8gHI5FawPzpgbTLAO7CMgoRhYi4w8S2DkF/9ZjjfbT9ChTf2vWJoCvXSfsw2r29TgHWw9ueX0bL/kH0dvpJmny66Q8FeYHfFiwln1T+y/n517Kes3i8I5JJ5WSu295jRRrUAThNW3q4ilZg+bKzedOM7xoyJuugMqy6b2Sah2hgpEGzdg/L00mUvLnGrKuxjQLnBTcn8w/9eOThgX33yiFpZVNNwyuGByb+oApwTC4ZsFJL/XFW1OsENvdAqswrHIyen7BQ3U1/PgMo/R7dBNNDpoTnQlnZOlDL9fTiQwMcz2rkkxHxxOLjmYu6Z1bROStqrlLBATcgr45QZIafs4VGZngZuw12dgpryMawP9cyOmCCtWbZAxUndaPq5yG8AgrV0hiDXRsyah/CTjilq5mGAgra6xJGuSRnuUjEP9NGYvEDJ/QbYuFCMOun6xj+dlIYz9fkyKmvz6O+d+UleMgdCGXxJCA43MPKFjs/FPciL7um2nRRM8wjGqad1Ui2WMe5jYapapDZJGtKt0gx+W8RCDjnOWUX3iHJYC4Ini/CVBCfb/MSAdfm2+OhEoIDRsBOqLulMV6RR/uzz9QKD3BTcK7el1JKD9wsv+9TVKZeJoiurs823f3gfGktwLiIXoAWeQAu4/TsqRHCPIupQU+BO3EjD3zD3cTJj9R2uPQs3C2x0hVoVNHtChkEE5WD4UJf7PKhZvsaE7ndsqWIrgYNCURLPJk39EjhO+uyGUCRxwkSFaOh7kxYxM8EJccaanTJQbQVmEBLY4SXABtvZoLL9s4UIXkJDhw5Zvp6/O/fX56jN6n1s3NXW1ki5eKuTUTAf4f5LLhgcJ887BmCyCVCGLf5V2O+GoMo64ctBELlHiB31oK3PxyNW2uWLfx2zjlHjO67hKJnyUDKEwLhM6zrw41YPwH8zLizFihoAhSZrMHkJJb0yTDLReytQrLIY3+1c2DrQgsPbWN5UN5edhZ5a59aRGqejyPHxt7Zy/rEeBCo3ZfSGJJEzKOtsIW8G2n0sGTyevaELNeOO5w4gEBn6bUB5D1Xlf4BwYGAT+GPNdXWT7yqqjwK5K5GaqhilLrzYggHGQJhExOxLMpP8jGzk6Z8seiYQt6/5uK+XT4Fz5nRNUBC8fLbqEvKjvKmxFUDxbWQGknGTsYl4J/uKs8PQGgSBeWqn8XfxwGO7ORuHweRRUionjbqWBKjuMreognla77+hBXalqNJ6jtFYmRQtb0dqqUMhzyzwChI7sVZOZyuFlmshUg+EYPYcouaz5ZSgTSbDawhAkaNOjcJoM2kV8L+PDqLRzHsO5fWC2/dM8sNfD8d4SRfHgCTzr+E03DT/XKJYPmf8wlv7zD6wwtm4eOHLV41yBXtW0fbXpwT/zrKK/nzem/LJKx4HWOUDq0iOkdtDMwPwtoGgzXjFoodsxS5c/RgPXzaIeZo0OR2JqgKvlGMqCsZGyp5/fWm4tqCUn/rsoyIINe2O8CrinrYMD/4jCnajeXwBRLIXfZnmbVvxHNTMUSobI8DWiYj07FgT5ZkPLE8FjXFjfmZoagOQCAA1hnMA7nfUgruFStVGyU0NSKe8wILD/sAZqFHOMyXBZ+LT82X1OhRGFvespMcJWwB/AwjWCWhF6FbRcLSTj06UB7+4EUdtEacsb5w9wLE33fB1NeGrSnACZ9gFbH42BW0qok5Qqd7NNU3fCjvRYSWoONnA=='
console.log(get_data(encrypted_data))

 

标签:逆向,pako,加密,ungzip,++,解密,返回值,CryptoJS,data
From: https://blog.csdn.net/m0_57265868/article/details/140567318

相关文章

  • 【JS逆向课件:第八课:异常处理】
    异常处理首先我们要理解什么叫做**"异常”**?在程序运行过程中,总会遇到各种各样的问题和错误。有些错误是我们编写代码时自己造成的:比如语法错误、调用错误,甚至逻辑错误。还有一些错误,则是不可预料的错误,但是完全有可能发生的:比如文件不存在、磁盘空间不足、......
  • 【JS逆向课件:第七课:模块与包】
    模块与包模块模块介绍在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护。为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。而这样的一......
  • RSA加解密笔记
        前文介绍了SM国产的对称加密算法介绍,这里记录一下RSA非对称加密情况,不太情况贸然上手还是有一些坑,密钥位数分为512,1024,2048,4096之类,公钥,私钥成对出现,一般文本之类,如请求参数而言,公钥加密,私钥解密,如果是证书,情况会稍微不同,这里不展开记录,比如:双方对接数据的时候......
  • EeayDecode:解码合约的自定义错误、事件和函数参数与返回值
    官网:easydecode.dev还在为解码合约自定义错误事件和函数参数与返回值而苦恼吗?快试试easydecode吧!只需提供合约ABI即可快速、方便的解码合约的自定义错误、事件和函数参数与返回值。1.解码Event将Event的Topics(字符串数组,使用,分割)和Data填入输入框,点击“DecodeE......
  • (新)app逆向四(常见加密算法)
    加密的分类1、单向加密:MD5、sha系列不可逆2、对称加密:AES、DES3、非对称加密:RSA、DSA4、补充算法:base641.md5importhashlibm=hashlib.md5()m.update('helloworld'.encode("utf8"))print(m.hexdigest())2.shaimporthashlibsha1=hashlib.sha1()data='hellow......
  • 使用PageHelper在同一个返回值接口中返回数据条数不对
    写这篇的原因:在同一个返回值的接口中调用两次分页,前端调接口发现一次的分页总数total是正常的,另一个是分页设置的一页的数量,别的不显示。pom中用到的依赖<dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper-spring-boot-starter</arti......
  • 安卓MT管理器v2.16.2/逆向修改神器 本地VIP已解锁
    MT管理器是一款强大的文件管理工具和APK逆向修改神器。如果你喜欢它的双窗口操作风格,可以单纯地把它当成文件管理器使用。如果你对修改APK有深厚的兴趣,那么你可以用它做许许多多的事,例如汉化应用、替换资源、修改布局、修改逻辑代码、资源混淆、去除签名校验等,主要取决于你如......
  • (新)app逆向二(adb操作)
    一、逆向的基本流程#1.获取app的目标(官网,豌豆荚,下载历史老版本);尽量不要去华为,小米应用市场下载;——》拿到app放在电脑上,并且安装到手机上#2.使用抓包工具,手机上操作app,进行抓包是(charles,fiddler);#3.使用反编译工具(JADX,JD_GUI),把apk问阿金反编译成java代码,分析代码,定位位置......
  • (五)JS逆向——问财同花顺
    爬取问财网的今日涨停信息 载荷多试几次可以发现除了页码等信息,都是固定值,因此变化一定是在请求头 可以发现变化的就是HeXin-V的值,并且在cookie中也有对应的键值对,所以下一步就是找到该值生成的位置。因为Cookie中有这个值,所以可以通过CookieHook的方式来定位(function......
  • 网络安全实验一 分组密码实验(AES加解密)
    本实验代码附在文末实验目的与要求:理解对称密码体制和分组密码算法的基本思想理解分组密码AES的基本原理实现AES的加解密过程,可以对各种文件(word、txt、mp3、jpg)进行加解密实现分组密码的密码分组链接工作模式与计算器工作模式实验环境:MicrosoftVisualStudio2022等......