首页 > 其他分享 >模型预训练任务

模型预训练任务

时间:2024-07-18 20:59:47浏览次数:18  
标签:训练任务 语言 词元 模型 建模 噪器

文章目录

    在进行模型的大规模预训练时,往往需要设计合适的自监督预训练任务,使得模型能够从海量无标注数据中学习到广泛的语义知识与世界知识。目前,常用 的预训练任务主要分为三类,包括语言建模(Language Modeling, LM)、去噪自编 码(Denoising Autoencoding, DAE)以及混合去噪器(Mixture-of-Denoisers, MoD)。 下图展示了这三种任务各自的输入与输出示例。

图片名称
Ilya Sutskever 对于预测下一个词元任务有效性的解释

语言建模

    语言建模任务是目前绝大部分大语言模型广泛采用的预训练任务。该任务的核心在于“预测下一个词元”,并且经常被应用于训练基于解码器的大语言模型,例如 GPT-3 和 PaLM 等。形式化来说,给定一个词元序列 u = [ u 1 ,

标签:训练任务,语言,词元,模型,建模,噪器
From: https://blog.csdn.net/weixin_43961909/article/details/140531674

相关文章

  • XGBoost模型构建+SHAP解析-Python代码——用XGBoost模型实现机器学习并进行黑箱过程解
    一、XGBoost模型简介1.1适用范围XGBoost(ExtremeGradientBoosting)是一个基于梯度提升(GradientBoosting)框架的增强算法,广泛应用于分类、回归、排序等任务。常见的应用包括:信用风险评估销售预测病毒检测图像识别1.2原理XGBoost是梯度提升树(GradientBoostedDecisionTree......
  • 决策树模型构建+调参Python代码——用决策树模型实现机器学习
    一、决策树模型简介1.1适用范围决策树模型(DecisionTree)可以用于分类和回归任务,广泛应用于以下领域:客户细分信用风险评估医疗诊断营销策略优化1.2原理决策树是一种树形结构的预测模型,通过一系列的特征测试(即节点的分裂)将数据集逐步划分,从而形成一个树状的决策路径。每个节......
  • 大型语言模型的 MOE 和 MOA
    AI生成   欢迎来到雲闪世界。大型语言模型(LLM)无疑席卷了科技行业。它们的迅速崛起得益于来自维基百科、网页、书籍、大量研究论文以及我们喜爱的社交媒体平台的用户内容的大量数据。数据和计算密集型模型一直在狂热地整合来自音频和视频......
  • Datawhale AI 夏令营——CPU部署大模型(LLM天池挑战赛)——Task2与3学习笔记
        Task2的任务是组队+寻找灵感,这里不作阐述;Task3的任务是实现RAG应用,阅读文档并观看卢哥的直播后,结合个人经验做个分享。    运行大语言模型,对LLM使用的加深,我们发现,在使用过程中,大模型会有很多幻觉出现。为了解决幻觉,科研人员提出了各种各样的方案......
  • 【大模型私有化部署:手把手教你部署并使用清华智谱GLM大模型】
    部署一个自己的大模型,没事的时候玩两下,这可能是很多技术同学想做但又迟迟没下手的事情,没下手的原因很可能是成本太高,近万元的RTX3090显卡,想想都肉疼,又或者官方的部署说明过于简单,安装的时候总是遇到各种奇奇怪怪的问题,难以解决。本文就来分享下我的安装部署经验,包括本地和租......
  • 【6!使用本地大模型调用代码,根本就是一场骗局!】
    通过大模型调用其他工具到底可不可行?ChatGPT或许能轻松搞定一切,但同样的需求落在本地大模型上,恐怕就要打个问号了。法国开发工程师EmilienLancelot尝试了多款号称具备工具调用功能的agent框架,来看看本地大模型到底能不能完成任务,但结果就像他总结的“一无所获”。是......
  • 模型训练中出现loss为NaN怎么办?
    文章目录一、模型训练中出现loss为NaN原因1.学习率过高2.梯度消失或爆炸3.数据不平衡或异常4.模型不稳定5.过拟合二、针对梯度消失或爆炸的解决方案1.使用`torch.autograd.detect_anomaly()`2.使用torchviz可视化计算图3.检查梯度的数值范围4.调整梯度剪裁......
  • AI Earth——基于决策树模型淮河流域冬小麦提取应用app
    应用介绍:本应用依据利用Landsat-8数据,基于潘力、夏浩铭、王瑞萌等研究论文(基于GoogleEarthEngine的淮河流域越冬作物种植面积制图)中提出的利用作物在不同物候期内卫星影像的光谱存在差异的特征,通过计算作物时间序列的皈依化植被指数(NDVI),选取越冬作物生长旺盛期NDVI最大......
  • LLM大模型新手训练指南
    基础用于语言建模的最常见架构是Transformer架构,由Vaswani等人在著名论文《AttentionIsAllYouNeed》中提出。我们不会在这里讨论该架构的具体细节,因为我们必须讨论导致并促成其创建的所有旧技术。Transformer使我们能够训练具有惊人推理能力的大型语言模型(LLM......
  • 隐马尔可夫模型之概率计算问题
    前向算法    算法目标:计算给定隐马尔可夫模型和观测序列的概率。    算法步骤:通过递归计算前向概率来实现,其中表示在时刻状态为并且观测到部分序列的概率。初始化在初始时刻,计算所有状态的初始前向概率:,其中,是初始状态概率,是状态生成观测的概率。递归计......