首页 > 其他分享 >whisper-api语音识别语音翻译高性能兼容openai接口协议的开源项目

whisper-api语音识别语音翻译高性能兼容openai接口协议的开源项目

时间:2024-07-17 18:57:27浏览次数:18  
标签:load 语音 get whisper 接口协议 token file options

whisper-api

介绍

使用openai的开源项目winsper语音识别开源模型封装成openai chatgpt兼容接口

软件架构

使用uvicorn、fastapi、openai-whisper等开源库实现高性能接口

更多介绍 [https://blog.csdn.net/weixin_40986713/article/details/138712293](https://blog.csdn.net/weixin_40986713/article/details/138712293)

使用说明
  1. 下载代码
  2. 安装 ffmpeg https://ffmpeg.org/download.html
  3. 安装依赖 项目根目录下执行命令 pip install -r requirements.txt
  4. 运行代码 项目根目录下执行命令 python main.py

这里的 http://0.0.0.0:3003 就是连接地址。

启动类代码
import atexit
import json
import os
import tempfile
import time

import uvicorn
from fastapi import FastAPI, UploadFile, File, Security, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials

from whisper_script import WhisperHandler

app = FastAPI()
security = HTTPBearer()
env_bearer_token = 'sk-tarzan'
model_size = os.getenv("MODEL_SIZE", "base")
language = os.getenv("LANGUAGE", "Chinese")


def cleanup_temp_file(path):
    if os.path.exists(path):
        os.remove(path)


with open('options.json', 'r') as options:
    # 使用json.load()函数读取并解析文件内容
    load_options = json.load(options)


# 语音识别
@app.post("/v1/audio/transcriptions")
async def transcribe(file: UploadFile = File(...), credentials: HTTPAuthorizationCredentials = Security(security)):
    if env_bearer_token is not None and credentials.credentials != env_bearer_token:
        raise HTTPException(status_code=401, detail="Invalid token")
    file_bytes = await file.read()
    return {"text": audio_to_text(file_bytes, 'transcribe')}


# 语音翻译
@app.post("/v1/audio/translations")
async def translate(file: UploadFile = File(...), credentials: HTTPAuthorizationCredentials = Security(security)):
    if env_bearer_token is not None and credentials.credentials != env_bearer_token:
        raise HTTPException(status_code=401, detail="Invalid token")
    file_bytes = await file.read()
    return {"text": audio_to_text(file_bytes, 'translate')}


def audio_to_text(file_bytes, task):
    start_time = time.time()
    max_file_size = 500 * 1024 * 1024
    if len(file_bytes) > max_file_size:
        raise HTTPException(status_code=400, detail="File is too large")
    temp_path = None
    try:
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
            temp_audio.write(file_bytes)
            temp_path = temp_audio.name
        model_size = load_options.get("model_size")
        language = load_options.get("language")
        prompts = {
            "verbose": load_options.get("verbose"),
            "temperature": load_options.get("temperature"),
            "compression_ratio_threshold": load_options.get("compression_ratio_threshold"),
            "logprob_threshold": load_options.get("logprob_threshold"),
            "no_speech_threshold": load_options.get("no_speech_threshold"),
            "condition_on_previous_text": load_options.get("condition_on_previous_text"),
            "initial_prompt": load_options.get("initial_prompt"),
            "word_timestamps": load_options.get("word_timestamps"),
            "prepend_punctuations": load_options.get("prepend_punctuations"),
            "append_punctuations": load_options.get("append_punctuations")
        }
        print('temp_path', temp_path)
        handler = WhisperHandler(temp_path, model_size=model_size, language=language, task=task, prompt=prompts)
        result = handler.transcribe()
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    finally:
        atexit.register(cleanup_temp_file, temp_path)
    end_time = time.time()
    print(f"audio to text took {end_time - start_time:.2f} seconds")
    return result['text']


if __name__ == "__main__":
    token = os.getenv("ACCESS_TOKEN")
    if token is not None:
        env_bearer_token = token
    try:
        uvicorn.run("main:app", reload=True, host="0.0.0.0", port=3003)
    except Exception as e:
        print(f"API启动失败!\n报错:\n{e}")

docker
  1. docker打包命令
docker build -t whisper .

2.docker命令启动

gpu显卡模式

docker run -itd --name whisper-api -p 3003:3003 --gpus all --restart=always whisper
  • 默认 ACCESS_TOKEN=sk-tarzan

cpu模式

docker run -itd --name whisper-api -p 3003:3003 --restart=always whisper
  • 默认 ACCESS_TOKEN=sk-tarzan

鉴权模式

docker run -itd --name whisper-api -p 3003:3003-e ACCESS_TOKEN=yourtoken --gpus all --restart=always whisper
docker run -itd --name whisper-api -p 3003:3003-e ACCESS_TOKEN=yourtoken --restart=always whisper
  • yourtoken 修改你设置的鉴权token,接口调用header 里传 Authorization:Bearer sk-tarzan

docker日志查看

docker logs -f [容器id或容器名称]
配置文件

options.json

{
  "model_size": "base",
  "language": "Chinese"
}

标签:load,语音,get,whisper,接口协议,token,file,options
From: https://blog.csdn.net/weixin_40986713/article/details/140502682

相关文章