首页 > 其他分享 >LivePortrait 数字人:开源的图生视频模型,本地部署和专业视频制作详细教程

LivePortrait 数字人:开源的图生视频模型,本地部署和专业视频制作详细教程

时间:2024-07-14 13:58:10浏览次数:23  
标签:视频 enable 图生 -- 1.100 源码 LivePortrait

脸部动画

看到上面面部表情动态图片,是不是感觉挺有有意思?它就是通过快手、中科大和复旦大学联合研发的图生视频开源大模型LivePortrait(灵动人像)生成的视频。通过LivePortrait大模型,我们只需要一张人脸正面图片和一段文字或音频,即可制作专业的视频内容,例如产品介绍、教学课程、趣味视频等。

同步的面部表情

有关LivePortrait更多的展示样例参见:https://liveportrait.github.io/

老牛同学将和大家一起,在本地部署LivePortrait图生视频大模型,并且生成我们自己的视频。本文将包括以下几部分:

  1. 基础环境准备:与我们之前部署 LLM 大模型不同,LivePortrait涉及到音频和视频等多媒体数据的处理,因此环境要稍微复杂一点
  2. LivePortrait 配置:包括大模型权重文件下载、配置等
  3. LivePortrait 使用:包括通过图片生成视频、Web 界面可视化生成视频等(建议配合 GPU 进行使用,老牛同学纯 CPU推理速度较慢)

LivePortrait 理论研究,可以参见论文:https://arxiv.org/pdf/2407.03168

LivePortrait 基础环境准备

基础环境准备分为以下 3 步:克隆 GitHub 示例源代码、安装 Python 依赖包和下载配置FFmpeg音视频工具库

【第一步:下载 GitHub 示例源码】

GitHub 示例源码下载目录:LivePortrait

git clone https://github.com/KwaiVGI/LivePortrait

特别注意: 示例代码克隆成功之后,我们可以看到示例源码目录LivePortrait下,有个pretrained_weights空目录,它就是用来存放预训练权重文件的目录,接下来的我们会下载权重文件!

【第二步:安装 Python 依赖包】

切换到 GitHub 示例源码目录:cd LivePortrait

# 激活环境:特别注意Python版本为3.9.18,其他版本可能不支持(老牛同学3.12就不支持)
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait

# 安装依赖包
pip install -r requirements.txt

如果Miniconda还未完成安装,建议先提前安装好:大模型应用研发基础环境配置(Miniconda、Python、Jupyter Lab、Ollama 等)

【第三步:下载和配置 FFmpeg 音视频工具库】

FFmpeg 是一个非常强大的开源软件工具库,主要用于处理多媒体数据,包括音频和视频的编码、解码、转码、复用、解复用、流媒体传输以及播放等。

我们可以通过 FFmpeg 官网下载:https://ffmpeg.org/download.html

或者,老牛同学已经下载好了,放到了百度网盘(评论区也有地址):https://pan.baidu.com/s/1IYutMbJGJSxLVY56-h4IPg?pwd=LNTX

下载安装好之后,把 FFmpeg 目录设置在PATH环境变量中,同时执行命令进行检测:ffmpeg -version

>ffmpeg -version
ffmpeg version 7.0.1-essentials_build-www.gyan.dev Copyright (c) 2000-2024 the FFmpeg developers
built with gcc 13.2.0 (Rev5, Built by MSYS2 project)
configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-zlib --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-sdl2 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxvid --enable-libaom --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-dxva2 --enable-d3d11va --enable-d3d12va --enable-ffnvcodec --enable-libvpl --enable-nvdec --enable-nvenc --enable-vaapi --enable-libgme --enable-libopenmpt --enable-libopencore-amrwb --enable-libmp3lame --enable-libtheora --enable-libvo-amrwbenc --enable-libgsm --enable-libopencore-amrnb --enable-libopus --enable-libspeex --enable-libvorbis --enable-librubberband
libavutil      59.  8.100 / 59.  8.100
libavcodec     61.  3.100 / 61.  3.100
libavformat    61.  1.100 / 61.  1.100
libavdevice    61.  1.100 / 61.  1.100
libavfilter    10.  1.100 / 10.  1.100
libswscale      8.  1.100 /  8.  1.100
libswresample   5.  1.100 /  5.  1.100
libpostproc    58.  1.100 / 58.  1.100

LivePortrait 模型权重下载和配置

我们可以通过多种方式下载预训练权重文件,包括 HF 和云盘等:

【方式一:HF 下载权重文件】

由于文件比较大,Git 无法直接下载,首先需要设置 Git 大文件环境:

git lfs install

然后克隆权重文件,下载的目录:pretrained_weights

git clone https://www.modelscope.cn/AI-ModelScope/LivePortrait.git pretrained_weights

由于文件比较大,Git 在克隆过程中可能会中断,我们可以通过 Git 命令重试:

# 切换到权重文件目录
cd pretrained_weights

# 继续中断下载
git lfs pull

【方式二:百度云盘或 Google Drive 下载】

百度云盘:https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn

Google 云盘:https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib

特别注意: 我们通过 Git 或者云盘下载到完整的权重文件之后,确认一下它的目录结构如下所示:

pretrained_weights
├── insightface
│   └── models
│       └── buffalo_l
│           ├── 2d106det.onnx
│           └── det_10g.onnx
└── liveportrait
    ├── base_models
    │   ├── appearance_feature_extractor.pth
    │   ├── motion_extractor.pth
    │   ├── spade_generator.pth
    │   └── warping_module.pth
    ├── landmark.onnx
    └── retargeting_models
        └── stitching_retargeting_module.pth

最后,把pretrained_weights目录下的insightfaceliveportrait这 2 个目录和文件全部复制到 GitHub 实例源码的pretrained_weights目录下。

小提示: 如果我们使用的是 MacOS 或者 Linux 操作系统,也可以尝试通过软链接来代替文件复制(因老牛同学是 Windows 系统,在这里无法展示,请大家尝试)!

使用 LivePortrait 生成视频

我们可以通过终端命令行或者 Web 可视化界面 2 种方式来使用 LivePortrait 生成视频:

方式一: 使用终端命令行生成视频】

  1. 打开终端,切换到 GitHub 示例源码目录:cd LivePortrait
  2. 激活 Python 环境:conda activate LivePortrait
  3. 经老牛同学测试,还需要安装额外 Python 依赖包:
# 额外依赖包
pip install tyro
pip install patch_ng

# 安装依赖包:如果前面已安装则可忽略(特别注意Python版本:3.9.18)
pip install -r requirements.txt
  1. 执行 Python 程序:在 GitHub 示例源码中,inference.py就是我们的大模型推理函数入口

打开终端,切换到 GitHub 示例源码目录cd LivePortrait,然后推理执行:python inference.py

可能的报错: 如果出现如下报错,请用Miniconda设置 Python 3.9.18 版本的环境:

ValueError: mutable default <class 'numpy.ndarray'> for field mask_crop is not allowed: use default_factory

可能的报错: 如果出现如下报错,默认需要 GPU 进行推理,如果我们有 GPU 则需要正确安装 GPU 驱动,或者我们可以强制CPU运行:

RuntimeError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx

强制 CPU 运行】我们可以通过 --flag-force-cpu 参数强制使用 CPU 推理:python inference.py --flag-force-cpu

如果内存或者卡内存足够,最终会在 GitHub 源码目录中生成了最终视频文件:./animations/s6--d0_concat.mp4

很不幸,老牛同学16GB内存不足,导致最终生成视频失败(预计至少 22GB 内存):

RuntimeError: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 6383992832 bytes.

根据官方文档,我们可以通过以下几个参数,来设置人像正脸图片、面部动画和生成视频目录:python inference.py --flag-force-cpu -s ./assets/examples/source/s6.jpg -d ./assets/examples/driving/d0.mp4 -o animations

方式二: 通过 Web 界面生成视频】

  1. 打开终端,切换到 GitHub 示例源码目录:cd LivePortrait
  2. 激活 Python 环境:conda activate LivePortrait
  3. 启动 Web 界面:python app.py --flag-force-cpu
....
FaceAnalysisDIY warmup time: 0.163s                                                                      face_analysis_diy.py:79
Running on local URL:  http://127.0.0.1:8890

我们通过浏览器打开地址:http://127.0.0.1:8890

Web可视化界面

我们可以直接使用实例源码的头像图片和头部动画,也可以选择自己的图片或头部动画,还可以点击摄像头图标,拍摄和录制我们自己的正脸和面部视频,之后点击

标签:视频,enable,图生,--,1.100,源码,LivePortrait
From: https://www.cnblogs.com/obullxl/p/18301480/NTopic2024071401

相关文章

  • 抖音视频图文根据ID获得评论信息网站源码
    抖音视频图文根据ID获得评论信息单页源码,id是视频的id,可以自定义第几条评论开始,不填默认为0,评论数量最大数量50,默认是20。 接口返回参数:"comments":评论信息集合{"uid":评论者用户uid,"reply_to_reply_id":被回复的回复的评论id,"sec_id":评论者用户secid,"create......
  • 监狱AI视频分析监控算法方案 YOLOv3
    监狱AI视频分析监控算法方案可以对现场人员行为及物体状态进行实时分析识别,监狱AI视频分析监控算法方案对监控画面中特殊区域入侵监测、睡岗脱岗监测、越界监测、人员异常徘徊监测、视频骤变监测、攀高识别、跌倒检测、夜间起床识别、打架斗殴检测、异常速度监测、遗留物监测等......
  • 音视频开发—使用FFmpeg从纯H264码流中提取图片 C语言实现
    文章目录1.H264码流文件解码流程关键流程详细解码流程详细步骤解析2.JPEG编码流程详细编码流程详细步骤解析3.完整示例代码4.效果展示从纯H.264码流中提取图片的过程包括解码和JPEG编码两个主要步骤,以下是详细阐述1.H264码流文件解码流程关键流程查找编解码器......
  • 响应式UI知识付费系统源码 知识付费软件 教育下载网站模板 知识付费做的最好的平台 视
    内容目录一、详细介绍二、效果展示1.部分代码2.效果图展示三、学习资料下载一、详细介绍这是一款知识付费平台模板,后台可上传本地视频,批量上传视频连接,视频后台可设计权限观看,免费试看时间时长,会员等级观看,付费观看等功能,也带软件app权限下载,帮助知识教育和软件......
  • 怎样才能将MP4转换成RMVB格式?这五种视频格式转换法一定要知道
    在当今数字化时代,视频格式转换已成为许多人的日常需求。特别是将MP4格式的视频转换为RMVB格式,这在某些特定的播放环境或设备中显得尤为重要。本文将详细介绍几种将MP4转换成RMVB格式的方法,帮助读者轻松应对视频格式转换的问题。方法一:使用【汇帮视频格式转换器】操作步骤如下......
  • 文图生视频核心技术研究
    大家好,我是卢旗。随着各种短视频应用留存客户时间的增长,运用AI生产视频这个领域的需求也日益增大。下面,我就以这个话题展开一些研究。一,图文生视频需要应用到的核心技术1,深度学习:特别是卷积神经网络(CNN)和Transformer模型,它们在图像和视频处理中表现出色。卷积神经网络(CNN......
  • 记录---实现抖音 “视频无限滑动“效果
    ......
  • 基于ssm+vue.js+uniapp的汽车养护管理系统附带文章和源代码部署视频讲解等
    文章目录前言详细视频演示具体实现截图技术栈后端框架SSM前端框架Vue持久层框架MyBaits系统测试系统测试目的系统功能测试系统测试结论为什么选择我代码参考数据库参考源码获取前言......
  • 基于springboot+vue.js+uniapp的江西郊医院血库管理系统附带文章源码部署视频讲解等
    文章目录前言详细视频演示具体实现截图技术栈后端框架SpringBoot前端框架Vue持久层框架MyBaits系统测试系统测试目的系统功能测试系统测试结论为什么选择我代码参考数据库参考源码获取前言......
  • 识别视频中的人数并统计出来
    目的:使用Python和pysimpleguil以及opencv写一个统计人流量的软件。要求:1加载选定的视频2通过形态学特征识别人,3统计人数并且在界面上显示出来,4保存识别出人数的信息。步骤1:安装必要的库首先,确保你已经安装了Python。然后,安装PySimpleGUI和OpenCV。你可以使用pip来安......