数据集
准备nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。
数据需要预处理,如下
原始数据格式:
article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]
预处理后的数据格式:
[CLS] article_context [SEP] summary_context [SEP]
代码示例:
# 下载依赖
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip install mindnlp
from mindnlp.utils import http_get
# 下载数据集
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')
from mindspore.dataset import TextFileDataset
# 加载数据集
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()
# 按9:1比例拆分训练集、测试集
train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)
import json
import numpy as np
# 数据集数据预处理
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):
def read_map(text):
data = json.loads(text.tobytes())
return np.array(data['article']), np.array(data['summarization'])
def merge_and_pad(article, summary):
# tokenization
# pad to max_seq_length, only truncate the article
tokenized = tokenizer(text=article, text_pair=summary,
padding='max_length', truncation='only_first', max_length=max_seq_len)
return tokenized['input_ids'], tokenized['input_ids']
dataset = dataset.map(read_map, 'text', ['article', 'summary'])
# change column names to input_ids and labels for the following training
dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])
dataset = dataset.batch(batch_size)
if shuffle:
dataset = dataset.shuffle(batch_size)
return dataset
from mindnlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)
train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
next(train_dataset.create_tuple_iterator())
模型构建
代码示例:
# 构建GPT2ForSummarization模型
from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModel
class GPT2ForSummarization(GPT2LMHeadModel):
def construct(
self,
input_ids = None,
attention_mask = None,
labels = None,
):
outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
shift_logits = outputs.logits[..., :-1, :]
shift_labels = labels[..., 1:]
# Flatten the tokens
loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
return loss
# 动态学习率
from mindspore import ops
from mindspore.nn.learning_rate_schedule import LearningRateSchedule
class LinearWithWarmUp(LearningRateSchedule):
"""
Warmup-decay learning rate.
"""
def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
super().__init__()
self.learning_rate = learning_rate
self.num_warmup_steps = num_warmup_steps
self.num_training_steps = num_training_steps
def construct(self, global_step):
if global_step < self.num_warmup_steps:
return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
return ops.maximum(
0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
) * self.learning_rate
模型训练
代码示例:
num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4
num_training_steps = num_epochs * train_dataset.get_dataset_size()
from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModel
config = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)
lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)
# 记录模型参数数量
print('number of model parameters: {}'.format(model.num_parameters()))
from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallback
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',
epochs=1, keep_checkpoint_max=2)
trainer = Trainer(network=model, train_dataset=train_dataset,
epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level='O1') # 开启混合精度
trainer.run(tgt_columns="labels")
运行结果:
模型推理
将向量数据变为中文数据。
代码示例:
def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):
def read_map(text):
data = json.loads(text.tobytes())
return np.array(data['article']), np.array(data['summarization'])
def pad(article):
tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)
return tokenized['input_ids']
dataset = dataset.map(read_map, 'text', ['article', 'summary'])
dataset = dataset.map(pad, 'article', ['input_ids'])
dataset = dataset.batch(batch_size)
return dataset
test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
print(next(test_dataset.create_tuple_iterator(output_numpy=True)))
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)
model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():
output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)
output_text = tokenizer.decode(output_ids[0].tolist())
print(output_text)
i += 1
if i == 1:
break
标签:11,25,max,dataset,num,steps,import,article,打卡 From: https://blog.csdn.net/leifchen90/article/details/140271225截图时间