背景
PDF(Portable Document Format)是一种广泛用于文档交换的文件格式,由Adobe Systems开发。它具有跨平台性、固定布局和易于打印等特点,因此在商业、学术和个人领域广泛应用。然而,PDF文件的解析一直是一个具有挑战性的问题,因为其内部结构的复杂性和多样性,使得提取其中的文本、图片和表格等内容并不是一件容易的事情。
技术方案
在目前的PDF文件解析领域中,我们可以将其大致分为以下几类技术方案:
- LLM/视觉大模型解析:LLM(Large Language Model)大型语言模型在近年来的发展中,展现出了强大的语言理解和生成能力。通过训练大规模的神经网络,可以实现对PDF文件中文字内容的理解和提取,这种方法尤其适用于那些布局复杂、内容丰富的PDF文件。
- OCR模型:光学字符识别(OCR)模型专门设计用于将PDF文件中的图像转换为可编辑的文本。这种技术在处理扫描版或图像化的PDF文档时尤其有用。
- 传统规则提取:传统的PDF解析方式可能包括基于规则的文本提取、图像处理和表格识别等方法。虽然这些方法可能不如深度学习模型那样灵活,但在某些情况下仍然是有效的选择。
各个解决方案目前可能需要配合使用,因为PDF格式本身的复杂程度,一项技术方案可能是无法100%满足业务需求的,这里面需要考虑的是: