首页 > 其他分享 >CosyVoice多语言、音色和情感控制模型,one-shot零样本语音克隆模型本地部署(Win/Mac),通义实验室开源

CosyVoice多语言、音色和情感控制模型,one-shot零样本语音克隆模型本地部署(Win/Mac),通义实验室开源

时间:2024-07-07 18:42:00浏览次数:26  
标签:git shot 300M CosyVoice 模型 speech https cosyvoice

近日,阿里通义实验室开源了CosyVoice语音模型,它支持自然语音生成,支持多语言、音色和情感控制,在多语言语音生成、零样本语音生成、跨语言声音合成和指令执行能力方面表现卓越。

CosyVoice采用了总共超15万小时的数据训练,支持中英日粤韩5种语言的合成,合成效果显著优于传统语音合成模型。

CosyVoice支持one-shot音色克隆 :仅需要3~10s的原始音频,即可生成模拟音色,甚至包括韵律、情感等细节。在跨语种的语音合成中,也有不俗的表现。

由于官方的版本暂不支持Windows和Mac平台,本次我们分别在这两个平台本地部署CosyVoice。

Windows平台

首先来到windows平台,克隆项目:

git clone https://github.com/v3ucn/CosyVoice_For_Windows

进入项目:

cd CosyVoice_For_Windows

生成内置模块:

git submodule update --init --recursive

随后安装依赖:

conda create -n cosyvoice python=3.11  
conda activate cosyvoice  
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com

官方推荐的Python版本是3.8,实际上3.11也是可以跑起来的,并且理论上3.11的性能更好。

随后下载deepspeed的windows版本安装包来进行安装:

https://github.com/S95Sedan/Deepspeed-Windows/releases/tag/v14.0%2Bpy311

最后,安装gpu版本的torch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

这里cuda的版本选择12,也可以安装11的。

随后下载模型:

# git模型下载,请确保已安装git lfs  
mkdir -p pretrained_models  
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M  
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT  
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct  
git clone https://www.modelscope.cn/speech_tts/speech_kantts_ttsfrd.git pretrained_models/speech_kantts_ttsfrd

由于使用国内的魔搭仓库,所以速度非常快

最后添加环境变量:

set PYTHONPATH=third_party/AcademiCodec;third_party/Matcha-TTS

基础用法:

from cosyvoice.cli.cosyvoice import CosyVoice  
from cosyvoice.utils.file_utils import load_wav  
import torchaudio  
  
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-SFT')  
# sft usage  
print(cosyvoice.list_avaliable_spks())  
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')  
torchaudio.save('sft.wav', output['tts_speech'], 22050)  
  
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M')  
# zero_shot usage  
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)  
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)  
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)  
# cross_lingual usage  
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)  
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)  
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)  
  
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-Instruct')  
# instruct usage  
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')  
torchaudio.save('instruct.wav', output['tts_speech'], 22050)

这里推荐使用webui,更加直观和方便:

python3 webui.py --port 9886 --model_dir ./pretrained_models/CosyVoice-300M

访问 http://localhost:9886

需要注意的是,官方的torch的backend使用的是sox,这里改成了soundfile:

torchaudio.set_audio_backend('soundfile')

可能会有一些bug,后续还请关注官方的项目更新。

MacOS平台

现在来到MacOs平台,还是先克隆项目:

git clone https://github.com/v3ucn/CosyVoice_for_MacOs.git

安装依赖:

cd CosyVoice_for_MacOs  
conda create -n cosyvoice python=3.8  
conda activate cosyvoice  
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com

随后需要通过Homebrew安装sox:

brew install sox

如此就配置好了,但是别忘了添加环境变量:

export PYTHONPATH=third_party/AcademiCodec:third_party/Matcha-TTS

使用方式和Windows版本保持一致。

这里还是推荐使用webui:

python3 webui.py --port 50000 --model_dir speech_tts/CosyVoice-300M

访问 http://localhost:50000

结语

平心而论,CosyVoice不愧是大厂出品,模型的品质没的说,代表了国内AI的最高水准,通义实验室名下无虚,当然,如果能将工程化之后的代码也开源出来,那就更好了,相信经过libtorch的优化,这个模型将会是开源TTS的不二选择。

标签:git,shot,300M,CosyVoice,模型,speech,https,cosyvoice
From: https://www.cnblogs.com/v3ucn/p/18288786

相关文章

  • 最小步数模型——AcWing 1107. 魔板
    最小步数模型定义最小步数模型通常是指在某种约束条件下,寻找从初始状态到目标状态所需的最少操作或移动次数的问题。这类问题广泛存在于算法、图论、动态规划、组合优化等领域。具体来说,它涉及确定一个序列或路径,使得按照特定规则执行一系列步骤后,能够从起始位置或状态转换到......
  • 研0学习笔记——大模型微调之LoRA技术
    概念:LoRA(LowRankAdaptaionofLLMs),即LLMs的低秩适应,可以做到只使用极少量参数的训练,达到微调整个模型的效果,解决了先前AdapterTuning与PrefixTuning的缺点。应用:1、在绘画应用stablediffusion中,LoRA以插件的形式嵌入模型中,使得用户可以下载相对于原模型(GB量级)更小的Lo......
  • 基于Sentence Transformer微调向量模型
    SentenceTransformer库升级到了V3,其中对模型训练部分做了优化,使得模型训练和微调更加简单了,跟着官方教程走了一遍,顺利完成向量模型的微调,以下是对官方教程的精炼和总结。一所需组件使用SentenceTransformer库进行向量模型的微调需要如下的组件:数据数据:用于训练和评估的数......
  • 07浅谈大语言模型可调节参数tempreture
    浅谈temperature什么是temperature?temperature是大预言模型生成文本时常用的两个重要参数。它的作用体现在控制模型输出的确定性和多样性:控制确定性:temperature参数可以控制模型生成文本的确定性,大部分模型中temperature取值范围为(0-1]。接近0时,模型倾向于选择概率最......
  • 灰色预测GM(1,1)模型的理论原理
    灰色预测是对时间有关的灰色过程进行预测。通过建立相应的微分方程模型,从而预测事物未来发展趋势的状况。由于笔者的水平不足,本章只是概括性地介绍GM(1,1)模型的理论原理,便于对初学者的初步理解目录一、灰色系统二、GM(1,1)灰色预测模型1.生成累加数据与紧临均值生成序列2.建立预测......
  • 【AI落地工程技术】— 垂直领域大模型的构建
    目录一、引言二、领域数据收集与预处理2.1数据收集2.2数据清洗2.3数据标注2.4数据增强三、模型选择与微调3.1模型选择3.2微调策略3.3多任务学习四、特征工程与融合4.1领域特征提取4.2特征融合五、模型评估与优化维度5.1评估指标5.2模型优化5.3迭......
  • 【数据分析】RFM会员价值度模型详解:大案例解析(第28天)
    系列文章目录RFM会员价值度模型分析用户行为分析文章目录系列文章目录前言1RFM会员价值度模型分析案例1.1RFM会员价值度模型概念1.2RFM会员价值度模型实现流程1.3RFM案例代码实现1.4数据可视化1.5案例结论1.6结果保存2用户行为分析案例2.1用户行为分析概念2......
  • 深度学习3 基于规则的决策树模型
    1.决策树是一种归纳学习算法,从一些没有规则、没有顺序、杂乱无章的数据中,推理出决 策模型。不管是什么算法的决策树,都是一种对实例进行分类的树形结构。决策树有三个要素:节点(Node)、分支(Branches)和结果(Leaf)。训练决策树,其实就是对训练样本的分析,把样本通过某个边界划分......
  • 惧怕人工智能不如拥抱人工智能,聊聊如何使用Spring AI框架快速开发大模型项目
    自ChatGPT出现以来,技术圈子里人人自危,导致大家心态越来越浮躁,生怕努力学习来的技术最后被人工智能轻易替代变得一文不值。其实换个角度来说大家也不用过于担心,社会的向前发展,生产力工具的优化更迭导致效率的提升是不变的主题,既然发展大势不可逆,何不端正心态,拥抱变化,让更先进......
  • 【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
    ......