首页 > 其他分享 >JCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

JCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

时间:2024-07-07 14:29:31浏览次数:26  
标签:... MATT JCR GADF PCNN CNN GASF

JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

目录

分类效果

格拉姆矩阵图

在这里插入图片描述

GAF-PCNN-MATT

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GASF-CNN

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

GADF-CNN

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断,三个模型对比,运行环境matlab2023b;PCNN-MATT为并行卷积神经网络融合多头注意力机制。

2.先运行格拉姆矩阵变换进行数据转换,然后运行分别GAF_PCNN-MATT.m,GADF_CNN.m,GASF_CNN.m完成多特征输入数据分类预测/故障诊断;

GADF_CNN.m,是只用到了格拉姆矩阵的GADF矩阵,将GADF矩阵送入CNN进行故障诊断。

GASF_CNN-MATT.m,是只用到了格拉姆矩阵的GASF矩阵,将GASF矩阵送入CNN进行故障诊断。

GAF_PCNN-MATT.m,是将GASF 图与GADF 图同时送入两条并行CNN-MATT中,经过卷积-池化后,两条CNN-MATT网络各输出一组一维向量;然后,将所输出两组一维向量进行拼接融合;通过全连接层后,最终将融合特征送入到Softmax 分类器中。

参考文献

在这里插入图片描述
在这里插入图片描述

  • PCNN-MATT结构

  • 在这里插入图片描述

  • CNN结构
    在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断



    fullyConnectedLayer(classnum,'Name','fc12')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

lgraph = layerGraph(layers1);

layers2 = [imageInputLayer([size(input2,1) size(input2,2)],'Name','vinput')  
    
    flattenLayer(Name='flatten2')
    
    bilstmLayer(15,'Outputmode','last','name','bilstm') 
    dropoutLayer(0.1)        % Dropout层,以概率为0.2丢弃输入
    reluLayer('Name','relu_2')
    selfAttentionLayer(2,2,"Name","mutilhead-attention")   %Attention机制
    fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');

plot(lgraph)


%% Set the hyper parameters for unet training
options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 1000, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.001, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',700, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线
%Code introduction
if nargin<2
    error('You have to supply all required input paremeters, which are ActualLabel, PredictedLabel')
end
if nargin < 3
    isPlot = true;
end

%plotting the widest polygon
A1=1;
A2=1;
A3=1;
A4=1;
A5=1;
A6=1;

a=[-A1 -A2/2 A3/2 A4 A5/2 -A6/2 -A1];
b=[0 -(A2*sqrt(3))/2 -(A3*sqrt(3))/2 0 (A5*sqrt(3))/2 (A6*sqrt(3))/2 0];

if isPlot
    figure   
    plot(a, b, '--bo','LineWidth',1.3)
    axis([-1.5 1.5 -1.5 1.5]);
    set(gca,'FontName','Times New Roman','FontSize',12);
    hold on
    %grid
end


% Calculating the True positive (TP), False Negative (FN), False Positive...
% (FP),True Negative (TN), Classification Accuracy (CA), Sensitivity (SE), Specificity (SP),...
% Kappa (K) and F  measure (F_M) metrics
PositiveClass=max(ActualLabel);
NegativeClass=min(ActualLabel);
cp=classperf(ActualLabel,PredictedLabel,'Positive',PositiveClass,'Negative',NegativeClass);
 CM=cp.DiagnosticTable;
    TP=CM(1,1);
    FN=CM(2,1);
    FP=CM(1,2);
    TN=CM(2,2);
    CA=cp.CorrectRate;
    SE=cp.Sensitivity; %TP/(TP+FN)
    SP=cp.Specificity; %TN/(TN+FP)
    Pr=TP/(TP+FP);
    Re=TP/(TP+FN);
    F_M=2*Pr*Re/(Pr+Re);
    FPR=FP/(TN+FP);
    TPR=TP/(TP+FN);
    K=TP/(TP+FP+FN);
    [X1,Y1,T1,AUC] = perfcurve(ActualLabel,PredictedLabel,PositiveClass); 
    %ActualLabel(1) means that the first class is assigned as positive class
    %plotting the calculated CA, SE, SP, AUC, K and F_M on polygon
x=[-CA -SE/2 SP/2 AUC K/2 -F_M/2 -CA];
y=[0 -(SE*sqrt(3))/2 -(SP*sqrt(3))/2 0 (K*sqrt(3))/2 (F_M*sqrt(3))/2 0];

if isPlot
    plot(x, y, '-ko','LineWidth',1)
    set(gca,'FontName','Times New Roman','FontSize',12);
%     shadowFill(x,y,pi/4,80)
    fill(x, y,[0.8706 0.9216 0.9804])
end

%calculating the PAM value
% Get the number of vertices
n = length(x);
% Initialize the area
p_area = 0;
% Apply the formula
for i = 1 : n-1
    p_area = p_area + (x(i) + x(i+1)) * (y(i) - y(i+1));
end
p_area = abs(p_area)/2;

%Normalization of the polygon area to one.
PA=p_area/2.59807;

if isPlot
    %Plotting the Polygon
    plot(0,0,'r+')
    plot([0 -A1],[0 0] ,'--ko')
    text(-A1-0.3, 0,'CA','FontWeight','bold','FontName','Times New Roman')
    plot([0 -A2/2],[0 -(A2*sqrt(3))/2] ,'--ko')
    text(-0.59,-1.05,'SE','FontWeight','bold','FontName','Times New Roman')
    plot([0 A3/2],[0 -(A3*sqrt(3))/2] ,'--ko')
    text(0.5, -1.05,'SP','FontWeight','bold','FontName','Times New Roman')
    plot([0 A4],[0 0] ,'--ko')
    text(A4+0.08, 0,'AUC','FontWeight','bold','FontName','Times New Roman')
    plot([0 A5/2],[0 (A5*sqrt(3))/2] ,'--ko')
    text(0.5, 1.05,'J','FontWeight','bold','FontName','Times New Roman')

    daspect([1 1 1])
end
Metrics.PA=PA;
Metrics.CA=CA;
Metrics.SE=SE;
Metrics.SP=SP;
Metrics.AUC=AUC;
Metrics.K=K;
Metrics.F_M=F_M;


printVar(:,1)=categories;
printVar(:,2)={PA, CA, SE, SP, AUC, K, F_M};
disp('预测结果打印:')
for i=1:length(categories)
    fprintf('%23s: %.2f \n', printVar{i,1}, printVar{i,2})
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

标签:...,MATT,JCR,GADF,PCNN,CNN,GASF
From: https://blog.csdn.net/kjm13182345320/article/details/140245831

相关文章

  • 主干网络篇 | YOLOv5/v7 更换主干网络之 ShuffleNetv2 | 高效CNN架构设计的实用指南(2)
    主干网络篇|YOLOv5/v7更换主干网络之ShuffleNetv2|高效CNN架构设计的实用指南概述YOLOv5和YOLOv7是目前主流的轻量级目标检测模型,在速度和精度方面取得了良好的平衡。然而,传统的YOLOv5/v7模型使用FPN和CSPNet等结构作为主干网络,在移动设备和嵌入式系统等资源受限的场景......
  • Python基于卷积神经网络分类模型(CNN分类算法)实现时装类别识别项目实战
    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景在深度学习领域,卷积神经网络(ConvolutionalNeuralNetworks,CNNs)因其在图像识别和分类任务上的卓越表现而备受关注。CNNs能够自动检测图像中的特......
  • 基于CNN的蒙牛评论情感分析(用的Tensorflow,因为不会Pytorch)
    目录一、数据来源二、导相应入的库 三、数据预处理四、模型的构建五、预测函数六、总结一、数据来源 蒙牛评论数据集:共有2000多条数据,其中一列为label,一列为review,label这一列已经分好差评和好评,差评为0,好评为1,好评和差评占比为1比1.二、导相应入的库#导入数......
  • 基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a 3.部分核心程序fori=1:Iteriforj=1:Npeoprng(i+j)iffunc_obj(x1(j,:))<pbest1(j)p1(j,:)=x1(j,:);%变量pbest1(j)=func_obj(x1(j,:));......
  • 工地安全着装识别系统 CNN
    工地安全着装识别系统依据很多工作服图片信息数据训练识别模型,工地安全着装识别系统对现场视频监控画面实时分析,工地安全着装识别系统利用视频监控机器学习算法判断工地作业人员着装、工作服颜色识别;工地安全着装识别系统识别到违规信息后系统马上把违规图片、违规视频等信息发......
  • 基于CNN的股票预测方法【卷积神经网络】
    基于机器学习方法的股票预测系列文章目录一、基于强化学习DQN的股票预测【股票交易】二、基于CNN的股票预测方法【卷积神经网络】文章目录基于机器学习方法的股票预测系列文章目录一、CNN建模原理二、模型搭建三、模型参数的选择(1)探究`window_size`的影响(2)探究`kerne......
  • 什么是SCI, SCIE, JCR和影响因子(IF)?
    SCI(ScientificCitationIndex):是美国科学信息研究所(ISI)编辑出版的引文索引类刊物,创刊于1964年。分印刷版、光盘版和联机板等载体。印刷版、光盘版从全球数万种期刊中选出3700种科技期刊,涉及基础科学的100余个领域。每年报道60余万篇最新文献,涉及引文900万条。进入SCI这一刊物的......
  • 独家原创 | Matlab实现CNN-Transformer多变量回归预测
    独家原创|Matlab实现CNN-Transformer多变量回归预测目录独家原创|Matlab实现CNN-Transformer多变量回归预测效果一览基本介绍程序设计参考资料效果一览基本介绍1.Matlab实现CNN-Transformer多变量回归预测;2.运行环境为Matlab2023b及以上;3.data为数......
  • 【CNN】用MNIST测试各种CNN网络模型性能
    使用MNIST测试各类CNN网络性能,在此记录,以便按需选择网络。除了第一个CNN为自己搭的以外,其余模型使用Pytorch官方模型,这些模型提出时是在ImageNet上进行测试,在此补充在MNIST上的测试。另外时间有限,每种模型只跑一次得出测试数据,实验结果仅供参考各种参数:训练集60000、测......
  • 动手学深度学习(Pytorch版)代码实践 -计算机视觉-44目标检测算法综述:R-CNN、SSD和YOLO
    41~44目标检测算法综述:R-CNN、SSD和YOLO1.区域卷积神经网络(R-CNN系列)1.1R-CNN使用启发式搜索算法来选择锚框。使用预训练模型对每个锚框提取特征(每个锚框视为一张图片,使用CNN提取特征)。训练SVM进行类别分类(在神经网络之前进行)。训练线性回归模型预测边界框偏移......