首页 > 其他分享 >AI大模型从零到专家:全面教程,一课掌握!

AI大模型从零到专家:全面教程,一课掌握!

时间:2024-07-05 16:26:17浏览次数:24  
标签:学习 教程 AI 模型 实践 技术 零到 数据

在学习大模型之前,你不必担心自己缺乏相关知识或认为这太难。我坚信,只要你有学习的意愿并付出努力,你就能够掌握大模型,并能够用它们完成许多有意义的事情。在这个快速变化的时代,虽然新技术和概念不断涌现,但希望你能静下心来,踏实地学习。一旦你精通了某项技术,你就能够用它来实现自己的目标,甚至可能找到理想的工作或完成具有挑战性的项目。

在众多的技术中,大模型因其强大的功能和广泛的应用而备受推崇。

那么,为什么要学习大模型呢?

首先,大模型在处理复杂数据和任务时展现出无与伦比的能力,如自然语言处理、图像识别和生成等。其次,大模型能够处理大量的数据,这对于数据挖掘、信息检索和知识发现等领域至关重要。此外,大模型也在推动人工智能的前沿发展,如自动化测试、网络安全和智能决策系统等。

大模型的学习不仅能够提升你的技术能力,还能够帮助你更好地理解数据科学和人工智能的原理。随着大模型在各个行业的应用越来越广泛,掌握这一技术将为你提供更多的职业机会从科学研究到商业应用,从金融服务到医疗保健,大模型正在成为推动创新和效率提升的关键因素。

学习大模型不仅是因为它们在当今和未来的技术领域中占据重要地位,更是因为它们有能力解决复杂问题并创造新的可能性。

2.大模型的优势

大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。

虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。

因此,从来没有一种技术能够像大模型这样同时深入到这么多领域并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。

3、大模型学习建议

在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。

同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。

接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。
img
这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:

  • 先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。
    学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。
  • 在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。
  • 不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

关于大模型技术储备

学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。

AI大模型入门基础教程

第1章 快速上手:人工智能演进与大模型崛起

1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程

第2章 大语言模型基础

2.1 Transformer 模型

  • 嵌入表示层
  • 注意力层
  • 前馈层
  • 残差连接与层归一化
  • 编码器和解码器结构

2.2 生成式预训练语言模型 GPT

  • 无监督预训练
  • 有监督下游任务微调
  • 基于 HuggingFace 的预训练语言模型实践

2.3 大语言模型结构

  • LLaMA 的模型结构
  • 注意力机制优化
第3章 大语言模型基础

3.1 数据来源

  • 通用数据
  • 专业数据

3.2 数据处理

  • 低质过滤
  • 冗余去除
  • 隐私消除
  • 词元切分

3.3 数据影响分析

  • 数据规模影响
  • 数据质量影响
  • 数据多样性影响

3.4 开源数据集合

  • Pile
  • ROOTS
  • RefinedWeb
  • SlimPajama

第4章 分布式训练

4.1 分布式训练概述
4.2 分布式训练并行策略

  • 数据并行
  • 模型并行
  • 混合并行
  • 计算设备内存优化

4.3 分布式训练的集群架构

  • 高性能计算集群硬件组成
  • 参数服务器架构
  • 去中心化架构

4.4 DeepSpeed 实践

  • 基础概念
  • LLaMA 分布式训练实践

第5章 有监督微调

5.1 提示学习和语境学习

  • 提示学习
  • 语境学习

5.2 高效模型微调

  • LoRA
  • LoRA 的变体

5.3 模型上下文窗口扩展

  • 具有外推能力的位置编码
  • 插值法

5.4 指令数据构建

  • 手动构建指令
  • 自动生成指令
  • 开源指令数据集

5.5 Deepspeed-Chat SFT 实践

  • 代码结构
  • 数据预处理
  • 自定义模型
  • 模型训练
  • 模型推
第6章 强化学习

6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践

第7章 大语言模型应用

7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化

第8章 大语言模型评估

8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

总结

坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。

记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。

最后,不要忘记与同行交流和学习。AI大模型领域有许多优秀的专家和社区,他们可以为你提供宝贵的指导和建议。参加技术交流会、阅读论文、加入专业论坛,这些都是提升自己技术水平的好方法。

祝愿你在AI大模型的学习之旅中取得丰硕的成果,开启属于你的AI大模型时代!

标签:学习,教程,AI,模型,实践,技术,零到,数据
From: https://blog.csdn.net/m0_63171455/article/details/140212163

相关文章

  • 鸿蒙OpenHarmony南向/北向快速开发教程-迅为RK3568开发板
    鸿蒙OpenHarmony南向/北向快速开发教程-迅为RK3568开发板 大家期待已久的迅为RK3568开发板终于迎来了鸿蒙4.1系统的强势支持!想知道如何实现快速开发学习吗?跟着我们一起来探索吧!    迅为RK3568开发板:     想象一下,你手中的RK3568开发板能够轻松运行鸿蒙4.1......
  • FAILED: cpu_adam.so /usr/bin/ld: cannot find -lcurand collect2: error: ld retur
    FAILED:cpu_adam.so c++cpu_adam.ocpu_adam_impl.o-shared-lcurand-L/home/deeplp/anaconda3/envs/minicpm/lib/python3.10/site-packages/torch/lib-lc10-ltorch_cpu-ltorch-ltorch_python-ocpu_adam.so/usr/bin/ld:cannotfind-lcurandcollect2:error:ld......
  • mainCRTStartup WinMainCRTStartup
    assumecs:codesg,ds:datas;str字符必须是13位,所以中间加了两个空格,网上很多代码也避开了这个问题,都是通过加空格,拼写错误,反正加个占位符;否则会输出一堆乱码,实在想不明白是什么原因datassegmentstrdb'HelloWorld!','$'datasendscodesgsegmentmovax,datas......
  • 数据库raidZ数据恢复
    一、RAIDZ概述RAIDZ(有时也写作RAID-Z或ZFSRAID)是一种基于ZFS(ZFileSystem)文件系统的RAID技术,它特别为存储系统提供了高级别的数据冗余和恢复能力。RAIDZ将数据分散存储到多个磁盘上,并通过特定的校验和机制来确保数据的完整性和可恢复性。与传统的RAID级别(如RAID0、RAID1、RAI......
  • Linux 交叉编译(toolchain) ARM aarch64版 libcurl.so 库
    前言全局说明curl是用来访问网络,可以上传下载数据一、说明系统环境:ubunt18.04二、官网下载源码:2.1最新版本https://curl.haxx.se/download.htmlhttps://github.com/curl/curl/releases2.2历史版本https://curl.se/download/2.3变更日志https://curl.se/chan......
  • 【Stable Diffusion】2个实用方法---去除AI绘画的油腻感
    虽然现在AI绘画的技术已经相对比较成熟,能做出很多以假乱真的照片,但AI绘画似乎还是有点“人工”的“油腻感”。本文想讨论一下,降低AI绘画“油腻感”的方法。AI的油腻感?Midjourney的V6版本,虽然已经能产出媲美“专业摄影”效果的图片,但还是有一股“AI味”。当然,这......
  • 1055 - Expression #9 of SELECT list is not in GROUP BY clause and contains nonag
    MySQL8的默认sql_mode包含了only_full_group_by,如果想要sql不按照这模式做检查,可以设置当前session的sql_mode值不包含oly_full_group_by;全局修改则使用以下sql--全局配置session级配置则去掉GlobalSETGLOBALsql_mode='ANSI_QUOTES,STRICT_ALL_TABLES,STRICT_TRANS_TAB......
  • 重装系统——Windows系统U盘启动盘制作保姆级教程(MSDN自带纯净版)
    一、工具准备1、U盘:>8G(空的,会被覆盖)2、电脑:有网就行(网好点的,系统大小有3G以上,慢了估计要很久)如果重装电脑是激活的,重装后还是激活的。(应该吧,只拿了一台电脑做实验,专业版的)二、开始制作1、下载官方媒体工具打开网址:https://www.microsoft.com/zh-cn/software-download选......
  • 为什么现在的AI编程师都是用Python来编程?
    前言: 在当今AI大火的时节,涌入了一大批AI编程师,和AI训练师!显而易见他们都是用的Python语言来编程的。当然AI也给我们的工作带来了很多便利,比如AI绘画,写文章,视频剪辑,脚本创做等等方面现在都可以来用AI来协助我高效完成工作。那么我们来看看现在的AI编程师为什么都用Python语言......
  • 小白也能看懂的Python基础教程(9)
    目录Python文件操作1、文件操作概述什么是文件?文件操作包含哪些内容呢?文件操作的作用2、文件的基本操作open()打开函数mode访问模式详解读操作相关方法read()方法:readlines()方法:readline()方法:file读取文件之readfile读取文件之readlines和reanline相对和绝对......