1005.K次取反后最大化的数组和
题意描述:
[!NOTE]
给你一个整数数组
nums
和一个整数k
,按以下方法修改该数组:
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。重复这个过程恰好
k
次。可以多次选择同一个下标i
。以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1 输出:5 解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3 输出:6 解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2 输出:13 解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 104
-100 <= nums[i] <= 100
1 <= k <= 104
思路:
[!TIP]
本题思路其实比较好想了,如何可以让数组和最大呢?
贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
局部最优可以推出全局最优。
那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。
那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。
虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。
我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!
那么本题的解题步骤为:
- 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
- 第二步:从前向后遍历,遇到负数将其变为正数,同时K--
- 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
- 第四步:求和
对应C++代码如下:
class Solution { static bool cmp(int a, int b) { return abs(a) > abs(b); } public: int largestSumAfterKNegations(vector<int>& A, int K) { sort(A.begin(), A.end(), cmp); // 第一步 for (int i = 0; i < A.size(); i++) { // 第二步 if (A[i] < 0 && K > 0) { A[i] *= -1; K--; } } if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步 int result = 0; for (int a : A) result += a; // 第四步 return result; } };
- 时间复杂度:
O(nlogn)
- 空间复杂度:
O(1)
总结
贪心的题目如果简单起来,会让人简单到开始怀疑:本来不就应该这么做么?这也算是算法?我认为这不是贪心?
本题其实很简单,不会贪心算法的同学都可以做出来,但是我还是全程用贪心的思路来讲解。
因为贪心的思考方式一定要有!
如果没有贪心的思考方式(局部最优,全局最优),很容易陷入贪心简单题凭感觉做,贪心难题直接不会做,其实这样就锻炼不了贪心的思考方式了。
所以明知道是贪心简单题,也要靠贪心的思考方式来解题,这样对培养解题感觉很有帮助。
134. 加油站
题意描述:
[!WARNING]
在一条环路上有
n
个加油站,其中第i
个加油站有汽油gas[i]
升。你有一辆油箱容量无限的的汽车,从第
i
个加油站开往第i+1
个加油站需要消耗汽油cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。给定两个整数数组
gas
和cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回-1
。如果存在解,则 保证 它是 唯一 的。示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
思路:
[!TIP]
暴力方法
暴力的方法很明显就是
O(n^2)
的,遍历每一个加油站为起点的情况,模拟一圈。如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。
暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程。
for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!
C++代码如下:
class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { for (int i = 0; i < cost.size(); i++) { int rest = gas[i] - cost[i]; // 记录剩余油量 int index = (i + 1) % cost.size(); while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了) rest += gas[index] - cost[index]; index = (index + 1) % cost.size(); } // 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置 if (rest >= 0 && index == i) return i; } return -1; } };
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
贪心算法(方法一)
直接从全局进行贪心选择,情况如下:
- 情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
- 情况二:
rest[i] = gas[i]-cost[i]
为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。- 情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。
C++代码如下:
class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int curSum = 0; int min = INT_MAX; // 从起点出发,油箱里的油量最小值 for (int i = 0; i < gas.size(); i++) { int rest = gas[i] - cost[i]; curSum += rest; if (curSum < min) { min = curSum; } } if (curSum < 0) return -1; // 情况1 if (min >= 0) return 0; // 情况2 // 情况3 for (int i = gas.size() - 1; i >= 0; i--) { int rest = gas[i] - cost[i]; min += rest; if (min >= 0) { return i; } } return -1; } };
- 时间复杂度:O(n)
- 空间复杂度:O(1)
其实我不认为这种方式是贪心算法,因为没有找出局部最优,而是直接从全局最优的角度上思考问题。
但这种解法又说不出是什么方法,这就是一个从全局角度选取最优解的模拟操作。
所以对于本解法是贪心,我持保留意见!
但不管怎么说,解法毕竟还是巧妙的,不用过于执着于其名字称呼。
贪心算法(方法二)
可以换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量
rest[i]
为gas[i] - cost[i]
。i从0开始累加
rest[i]
,和记为curSum
,一旦curSum
小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。如图:
那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?
如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。
那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里
curSum>=0
呢? 如图:如果
curSum<0
说明区间和1 + 区间和2 < 0
, 那么 假设从上图中的位置开始计数curSum
不会小于0的话,就是 区间和2>0。
区间和1 + 区间和2 < 0
同时区间和2>0
,只能说明区间和1 < 0
, 那么就会从假设的箭头初就开始从新选择其实位置了。那么局部最优:当前累加rest[i]的和
curSum
一旦小于0,起始位置至少要是i+1
,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。局部最优可以推出全局最优,找不出反例,试试贪心!
C++代码如下:
class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int curSum = 0; int totalSum = 0; int start = 0; for (int i = 0; i < gas.size(); i++) { curSum += gas[i] - cost[i]; totalSum += gas[i] - cost[i]; if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0 start = i + 1; // 起始位置更新为i+1 curSum = 0; // curSum从0开始 } } if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了 return start; } };
- 时间复杂度:O(n)
- 空间复杂度:O(1)
说这种解法为贪心算法,才是有理有据的,因为全局最优解是根据局部最优推导出来的。
总结
对于本题首先给出了暴力解法,暴力解法模拟跑一圈的过程其实比较考验代码技巧的,要对while使用的很熟练。
然后给出了两种贪心算法,对于第一种贪心方法,其实我认为就是一种直接从全局选取最优的模拟操作,思路还是很巧妙的,值得学习一下。对于第二种贪心方法,才真正体现出贪心的精髓,用局部最优可以推出全局最优,进而求得起始位置。
135. 分发糖果
题意描述:
[!CAUTION]
n
个孩子站成一排。给你一个整数数组ratings
表示每个孩子的评分。你需要按照以下要求,给这些孩子分发糖果:
- 每个孩子至少分配到
1
个糖果。- 相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
示例 1:
输入:ratings = [1,0,2] 输出:5 解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:ratings = [1,2,2] 输出:4 解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。 第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。
提示:
n == ratings.length
1 <= n <= 2 * 104
0 <= ratings[i] <= 2 * 104
思路:
[!TIP]
这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果
ratings[i] > ratings[i - 1]
那么[i]
的糖 一定要比[i - 1]
的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
代码如下:
// 从前向后 for (int i = 1; i < ratings.size(); i++) { if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1; }
如图:
再确定左孩子大于右孩子的情况(从后向前遍历)
遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
因为
rating[5]与rating[4]
的比较 要利用上rating[5]与rating[6]
的比较结果,所以 要从后向前遍历。如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:
所以确定左孩子大于右孩子的情况一定要从后向前遍历!
如果
ratings[i] > ratings[i + 1]
,此时candyVec[i]
(第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1
(从右边这个加1得到的糖果数量),一个是candyVec[i]
(之前比较右孩子大于左孩子得到的糖果数量)。那么又要贪心了,局部最优:取
candyVec[i + 1] + 1
和candyVec[i]
最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。局部最优可以推出全局最优。
所以就取
candyVec[i + 1] + 1
和candyVec[i]
最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。如图:
所以该过程代码如下:
// 从后向前 for (int i = ratings.size() - 2; i >= 0; i--) { if (ratings[i] > ratings[i + 1] ) { candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1); } }
整体代码如下:
class Solution { public: int candy(vector<int>& ratings) { vector<int> candyVec(ratings.size(), 1); // 从前向后 for (int i = 1; i < ratings.size(); i++) { if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1; } // 从后向前 for (int i = ratings.size() - 2; i >= 0; i--) { if (ratings[i] > ratings[i + 1] ) { candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1); } } // 统计结果 int result = 0; for (int i = 0; i < candyVec.size(); i++) result += candyVec[i]; return result; } };
- 时间复杂度: O(n)
- 空间复杂度: O(n)
总结
这在
leetcode
上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼。那么本题我采用了两次贪心的策略:
- 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
- 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。
这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。
860.柠檬水找零
题意描述:
[!NOTE]
在柠檬水摊上,每一杯柠檬水的售价为
5
美元。顾客排队购买你的产品,(按账单bills
支付的顺序)一次购买一杯。每位顾客只买一杯柠檬水,然后向你付
5
美元、10
美元或20
美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付5
美元。注意,一开始你手头没有任何零钱。
给你一个整数数组
bills
,其中bills[i]
是第i
位顾客付的账。如果你能给每位顾客正确找零,返回true
,否则返回false
。示例 1:
输入:bills = [5,5,5,10,20] 输出:true 解释: 前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。 第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。 第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。 由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
输入:bills = [5,5,10,10,20] 输出:false 解释: 前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。 对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。 对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。 由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
1 <= bills.length <= 105
bills[i]
不是5
就是10
或是20
思路:
[!TIP]
这是前几天的
leetcode
每日一题,感觉不错,给大家讲一下。这道题目刚一看,可能会有点懵,这要怎么找零才能保证完成全部账单的找零呢?
但仔细一琢磨就会发现,可供我们做判断的空间非常少!
只需要维护三种金额的数量,5,10和20。
有如下三种情况:
- 情况一:账单是5,直接收下。
- 情况二:账单是10,消耗一个5,增加一个10
- 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5
此时大家就发现 情况一,情况二,都是固定策略,都不用我们来做分析了,而唯一不确定的其实在情况三。
而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。
账单是20的情况,为什么要优先消耗一个10和一个5呢?
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
局部最优可以推出全局最优,并找不出反例,那么就试试贪心算法!
C++代码如下:
class Solution { public: bool lemonadeChange(vector<int>& bills) { int five = 0, ten = 0, twenty = 0; for (int bill : bills) { // 情况一 if (bill == 5) five++; // 情况二 if (bill == 10) { if (five <= 0) return false; ten++; five--; } // 情况三 if (bill == 20) { // 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着 if (five > 0 && ten > 0) { five--; ten--; twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零 } else if (five >= 3) { five -= 3; twenty++; // 同理,这行代码也可以删了 } else return false; } } return true; } };
- 时间复杂度: O(n)
- 空间复杂度: O(1)
总结
咋眼一看好像很复杂,分析清楚之后,会发现逻辑其实非常固定。
这道题目可以告诉大家,遇到感觉没有思路的题目,可以静下心来把能遇到的情况分析一下,只要分析到具体情况了,一下子就豁然开朗了。
如果一直陷入想从整体上寻找找零方案,就会把自己陷进去,各种情况一交叉,只会越想越复杂了。
406.根据身高重建队列
题意描述:
[!WARNING]
假设有打乱顺序的一群人站成一个队列,数组
people
表示队列中一些人的属性(不一定按顺序)。每个people[i] = [hi, ki]
表示第i
个人的身高为hi
,前面 正好 有ki
个身高大于或等于hi
的人。请你重新构造并返回输入数组
people
所表示的队列。返回的队列应该格式化为数组queue
,其中queue[j] = [hj, kj]
是队列中第j
个人的属性(queue[0]
是排在队列前面的人)。示例 1:
输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]] 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 解释: 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]] 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
1 <= people.length <= 2000
0 <= hi <= 106
0 <= ki < people.length
- 题目数据确保队列可以被重建
思路:
[!TIP]
本题有两个维度 h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。
其实如果大家认真做了135. 分发糖果 (opens new window),就会发现和此题有点点的像。
在135. 分发糖果 (opens new window)我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。
如果两个维度一起考虑一定会顾此失彼。
对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?
如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。
那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。
此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了,为什么呢?
以图中{5,2} 为例:
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
局部最优可推出全局最优,找不出反例,那就试试贪心。
整个插入过程如下:
sort (people.begin(), people.end(), cmp)
变成之后排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:
- 插入[7,0]:[[7,0]]
- 插入[7,1]:[[7,0],[7,1]]
- 插入[6,1]:[[7,0],[6,1],[7,1]]
- 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
- 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
- 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
此时就按照题目的要求完成了重新排列。
C++代码如下:
// 版本一 class Solution { public: static bool cmp(const vector<int>& a, const vector<int>& b) { if (a[0] == b[0]) return a[1] < b[1]; return a[0] > b[0]; } vector<vector<int>> reconstructQueue(vector<vector<int>>& people) { sort (people.begin(), people.end(), cmp); vector<vector<int>> que; for (int i = 0; i < people.size(); i++) { //people[i][1]表示二维数组people的下标为i处的k值 int position = people[i][1]; que.insert(que.begin() + position, people[i]); } return que; } };
- 时间复杂度:
O(nlog n + n^2)
- 空间复杂度:
O(n)
但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。
所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n2)了,甚至可能拷贝好几次,就不止O(n2)了。
改成链表之后,C++代码如下:
// 版本二 class Solution { public: // 身高从大到小排(身高相同k小的站前面) static bool cmp(const vector<int>& a, const vector<int>& b) { if (a[0] == b[0]) return a[1] < b[1]; return a[0] > b[0]; } vector<vector<int>> reconstructQueue(vector<vector<int>>& people) { sort (people.begin(), people.end(), cmp); list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多 for (int i = 0; i < people.size(); i++) { int position = people[i][1]; // 插入到下标为position的位置 std::list<vector<int>>::iterator it = que.begin(); // auto it = que.begin(); while (position--) { // 寻找在插入位置 it++; } que.insert(it, people[i]); } return vector<vector<int>>(que.begin(), que.end()); } };
- 时间复杂度:
O(nlog n + n^2)
- 空间复杂度:
O(n)
大家可以把两个版本的代码提交一下试试,就可以发现其差别了!
关于本题使用数组还是使用链表的性能差异,我在贪心算法:根据身高重建队列(续集) (opens new window)中详细讲解了一波
大家都知道对于普通数组,一旦定义了大小就不能改变,例如int a[10];,这个数组a至多只能放10个元素,改不了的。
对于动态数组,就是可以不用关心初始时候的大小,可以随意往里放数据,那么耗时的原因就在于动态数组的底层实现。
动态数组为什么可以不受初始大小的限制,可以随意push_back
数据呢?
首先vector的底层实现也是普通数组。
vector的大小有两个维度一个是size
一个是capicity
,size
就是我们平时用来遍历vector
时候用的,例如:
for (int i = 0; i < vec.size(); i++) {
}
而capicity
是vector底层数组(就是普通数组)的大小,capicity
可不一定就是size
。
当insert
数据的时候,如果已经大于capicity
,capicity
会成倍
扩容,但对外暴漏的size其实仅仅是+1。
那么既然vector底层实现是普通数组,怎么扩容的?
就是重新申请一个二倍于原数组大小的数组,然后把数据都拷贝过去,并释放原数组内存。(对,就是这么原始粗暴的方法!)
举一个例子,如图:
原vector
中的size
和capicity
相同都是3,初始化为1 2 3,此时要push_back
一个元素4。
那么底层其实就要申请一个大小为6的普通数组,并且把原元素拷贝过去,释放原数组内存,注意图中底层数组的内存起始地址已经变了。
同时也注意此时capicity
和size
的变化,关键的地方我都标红了。
而在贪心算法:根据身高重建队列 (opens new window)中,我们使用vector
来做insert
的操作,此时大家可会发现,虽然表面上复杂度是O(n2),但是其底层都不知道额外做了多少次全量拷贝了,所以算上vector
的底层拷贝,整体时间复杂度可以认为是O(n2+ t × n)级别的,t是底层拷贝的次数。
那么是不是可以直接确定好vector
的大小,不让它在动态扩容了,例如在贪心算法:根据身高重建队列 (opens new window)中已经给出了有people.size
这么多的人,可以定义好一个固定大小的vector
,这样我们就可以控制vector
,不让它底层动态扩容。
这种方法需要自己模拟插入的操作,不仅没有直接调用insert
接口那么方便,需要手动模拟插入操作,而且效率也不高!
手动模拟的过程其实不是很简单的,需要很多细节,我粗略写了一个版本,如下:
// 版本三
// 使用vector,但不让它动态扩容
class Solution {
public:
static bool cmp(const vector<int> a, const vector<int> b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
sort (people.begin(), people.end(), cmp);
vector<vector<int>> que(people.size(), vector<int>(2, -1));
for (int i = 0; i < people.size(); i++) {
int position = people[i][1];
if (position == que.size() - 1) que[position] = people[i];
else { // 将插入位置后面的元素整体向后移
for (int j = que.size() - 2; j >= position; j--) que[j + 1] = que[j];
que[position] = people[i];
}
}
return que;
}
};
这份代码就是不让vector
动态扩容,全程我们自己模拟insert
的操作,大家也可以直观的看出是一个O(n^2)
的方法了。
但这份代码在leetcode上统计的耗时甚至比版本一的还高,我们都不让它动态扩容了,为什么耗时更高了呢?
一方面是leetcode的耗时统计本来就不太准,忽高忽低的,只能测个大概。
另一方面:可能是就算避免的vector的底层扩容,但这个固定大小的数组,每次向后移动元素赋值的次数比方法一中移动赋值的次数要多很多。
因为方法一中一开始数组是很小的,插入操作,向后移动元素次数比较少,即使有偶尔的扩容操作。而方法三每次都是按照最大数组规模向后移动元素的。
所以对于两种使用数组的方法一和方法三,也不好确定谁优,但一定都没有使用方法二链表的效率高!
一波分析之后,对于贪心算法:根据身高重建队列 (opens new window),大家就安心使用链表吧!别折腾了,相当于我替大家折腾了一下。
[!TIP]
总结
大家应该发现了,编程语言中一个普通容器的insert,delete的使用,都可能对写出来的算法的有很大影响!
如果抛开语言谈算法,除非从来不用代码写算法纯分析,否则的话,语言功底不到位O(n)的算法可以写出O(n^2)的性能。
相信在这里学习算法的录友们,都是想在软件行业长远发展的,都是要从事编程的工作,那么一定要深耕好一门编程语言,这个非常重要!
关于出现两个维度一起考虑的情况,我们已经做过两道题目了,另一道就是135. 分发糖果 (opens new window)。
其技巧都是确定一边然后贪心另一边,两边一起考虑,就会顾此失彼。
这道题目可以说比135. 分发糖果 (opens new window)难不少,其贪心的策略也是比较巧妙。
最后我给出了两个版本的代码,可以明显看是使用C++中的list(底层链表实现)比vector(数组)效率高得多。
对使用某一种语言容器的使用,特性的选择都会不同程度上影响效率。
所以很多人都说写算法题用什么语言都可以,主要体现在算法思维上,其实我是同意的但也不同意。
对于看别人题解的同学,题解用什么语言其实影响不大,只要题解把所使用语言特性优化的点讲出来,大家都可以看懂,并使用自己语言的时候注意一下。对于写题解的同学,刷题用什么语言影响就非常大,如果自己语言没有学好而强调算法和编程语言没关系,其实是会误伤别人的。
这也是我为什么统一使用C++写题解的原因
452. 用最少数量的箭引爆气球
题意描述:
[!WARNING]
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组
points
,其中points[i] = [xstart, xend]
表示水平直径在xstart
和xend
之间的气球。你不知道气球的确切 y 坐标。一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标
x
处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足xstart ≤ x ≤ x``end
,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。给你一个数组
points
,返回引爆所有气球所必须射出的 最小 弓箭数 。示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]] 输出:2 解释:气球可以用2支箭来爆破: -在x = 6处射出箭,击破气球[2,8]和[1,6]。 -在x = 11处发射箭,击破气球[10,16]和[7,12]。
示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]] 输出:4 解释:每个气球需要射出一支箭,总共需要4支箭。
示例 3:
输入:points = [[1,2],[2,3],[3,4],[4,5]] 输出:2 解释:气球可以用2支箭来爆破: - 在x = 2处发射箭,击破气球[1,2]和[2,3]。 - 在x = 4处射出箭,击破气球[3,4]和[4,5]。
提示:
1 <= points.length <= 105
points[i].length == 2
-231<= xstart < xend <= 231 - 1
思路:
标签:7.4,people,int,vector,数组,气球,贪心 From: https://www.cnblogs.com/7dragonpig/p/18284891[!TIP]
如何使用最少的弓箭呢?
直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?
尝试一下举反例,发现没有这种情况。
那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?
如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。
但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。
以上为思考过程,已经确定下来使用贪心了,那么开始解题。
为了让气球尽可能的重叠,需要对数组进行排序。
那么按照气球起始位置排序,还是按照气球终止位置排序呢?
其实都可以!只不过对应的遍历顺序不同,我就按照气球的
起始位置
排序了。既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。
从前向后遍历遇到重叠的气球了怎么办?
如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
C++代码如下:
class Solution { private: static bool cmp(const vector<int>& a, const vector<int>& b) { return a[0] < b[0]; } public: int findMinArrowShots(vector<vector<int>>& points) { if (points.size() == 0) return 0; sort(points.begin(), points.end(), cmp); int result = 1; // points 不为空至少需要一支箭 for (int i = 1; i < points.size(); i++) { if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>= result++; // 需要一支箭 } else { // 气球i和气球i-1挨着 points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界 } } return result; } };
- 时间复杂度:O(nlog n),因为有一个快排
- 空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
可以看出代码并不复杂。
注意事项
注意题目中说的是:满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,
所以代码中
if (points[i][0] > points[i - 1][1])
不能是>=
(不需要加一支箭)总结
这道题目贪心的思路很简单也很直接,就是重复的一起射了,但本题我认为是有难度的。
就算思路都想好了,模拟射气球的过程,很多同学真的要去模拟了,实时把气球从数组中移走,这么写的话就复杂了。
而且寻找重复的气球,寻找重叠气球最小右边界,其实都有代码技巧。
贪心题目有时候就是这样,看起来很简单,思路很直接,但是一写代码就感觉贼复杂无从下手。
这里其实是需要代码功底的,那代码功底怎么练?多看多写多总结!