http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1552
把那n个数写两次,分成相同的两堆,判断相加是质数的,连一条边,然后找最大匹配,ans = 最大匹配 / 2
做的时候一直超时,原来是Miller_Rabin的quick_pow那里需要quick_mul配合,不然溢出。
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#include <cmath>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#include <map>
#include <time.h>
#define clr(u,v); memset(u,v,sizeof(u));
using namespace std;
typedef long long LL;
const int maxn = 100 + 20;
const int check_time = 20;
bool e[maxn][maxn];
LL quick_mul(LL a, LL b, LL MOD) {
//求解 a*b%MOD的算法 // 原理:2*19 = 2*(1+2+16)
LL base = a % MOD;
b %= MOD; // a*b%MOD 等价于 (a%MOD * b%MOD) % MOD;
LL ans = 0; //记住是0 因为中间过程是加
while (b) {
if (b & 1) {
ans = (ans + base); //直接取模慢很多
if (ans >= MOD) ans -= MOD;
}
base = (base << 1); //notice
if (base >= MOD) base -= MOD;
b >>= 1;
}
return ans;
}
LL quick_pow(LL a, LL b, LL MOD) { //求解 a^b%MOD的值
LL base = a % MOD;
LL ans = 1; //相乘,所以这里是1
while (b) {
if (b & 1) {
ans = quick_mul(ans, base, MOD); //如果这里是很大的数据,就要用quick_mul
}
base = quick_mul(base, base, MOD); //notice。注意这里,每次的base是自己base倍
b >>= 1;
}
return ans;
}
bool check(LL a, LL n, LL x, LL t) { //以a为基。n-1写成了 2^t * k,判断n是否为合数
LL ret = quick_pow (a, x, n); //先算 a^k%n 后来一直平方.平方t次
LL last = ret; //last就是a^k次方这个值,看成整体。符合X^2这个公式
for (int i = 1; i <= t; ++i) {
ret = quick_mul(ret, ret, n); //平方他,last就是一个大X,ret是X^2
if (ret == 1 && last != 1 && last != n - 1) return true; //合数
last = ret;
}
if (ret != 1) return true; //费马小定理,如果a^(n-1)%n != 1就绝逼不是素数
return false;
}
bool Miller_Rabin(LL n) { //判断n是否质数
if (n < 2) return false;
if (n == 2) return true;
if (n % 2 == 0) return false; //偶数不是质数
LL k = n - 1;
LL t = 0; //把n-1拆成 2^t * k 这种形式,那么从k开始验证,a^k,不断平方即可
while ( (k & 1) == 0 ) { //如果x还是偶数的话,就是还有2的因子
k >>= 1;
t++;
}
for (int i = 1; i <= check_time; i++) {
LL a = rand() % (n - 1) + 1; //最大去到n-1,[1,n-1]
if (check (a, n, k, t)) //n-1写成了 2^t * k.米勒测试
return false; //合数
}
return true; //质数
}
LL arr[maxn];
int n;
int match[maxn];
bool vis[maxn];
int dfs(int u) {
for (int i = 1; i <= n; ++i) {
if (!vis[i] && e[u][i]) {
vis[i] = true;
if (match[i] == 0 || dfs(match[i])) {
match[i] = u;
return 1;
}
}
}
return 0;
}
int hungary() {
memset(match, 0, sizeof match);
int ans = 0;
for (int i = 1; i <= n; ++i) {
memset(vis, false, sizeof vis);
if (dfs(i)) ans++;
}
return ans / 2;
}
void work() {
memset(e, false, sizeof e);
// memset(match, 0, sizeof match);
for (int i = 1; i <= n; ++i) {
scanf("%lld", &arr[i]);
}
for (int i = 1; i <= n; ++i) {
for (int j = i + 1; j <= n; ++j) {
if (Miller_Rabin(arr[i] + arr[j])) {
e[i][j] = true;
e[j][i] = true;
}
}
}
// for (int i = 1; i <= n; ++i) {
// for (int j = 1; j <= n; ++j) {
// cout << e[i][j] << " ";
// }
// cout << endl;
// }
printf("%d\n", hungary());
}
int main() {
#ifdef local
freopen("case.in", "r", stdin);
// freopen("out.out", "w", stdout);
#endif
srand(time(NULL));
// cout << Miller_Rabin(1) << endl;
while (scanf("%d", &n) != EOF) work();
return 0;
}
View Code
标签:1552,return,int,Miller,LL,base,ans,csu,MOD From: https://blog.51cto.com/u_15833059/5779587