首页 > 其他分享 >Transformer模型

Transformer模型

时间:2024-07-02 20:55:59浏览次数:15  
标签:Transformer 模型 编码器 解码器 序列 注意力

Transformer模型是深度学习领域的一种创新架构,尤其在自然语言处理(NLP)任务中表现出色。它是由Vaswani等人在2017年的论文《Attention is All You Need》中首次提出的。以下是对Transformer模型的详细介绍:

Transformer的起源和重要性

Transformer模型的提出是为了解决传统循环神经网络(RNN)和长短时记忆网络(LSTM)在处理长序列时存在的效率和性能问题。RNN和LSTM虽然能够捕捉序列的长期依赖关系,但由于其串行处理方式,导致计算效率低下,尤其是在并行计算环境中。Transformer模型通过使用自注意力机制(self-attention mechanism)克服了这些问题,使得模型能够并行处理序列中的所有元素,极大地提高了训练速度和模型性能。

Transformer的架构

Transformer模型由两大部分组成:编码器(Encoder)和解码器(Decoder)。这两个部分都是由多层相同结构的子层构成。

编码器(Encoder)

编码器接收输入序列,将其转换为一组固定长度的向量表示。每一层编码器包含两个子层:

  1. 多头自注意力机制(Multi-head Self-Attention):该机制允许模型同时关注输入序列的不同部分,增强模型捕捉复杂依赖关系的能力。
  2. 前馈神经网络(Position-wise Feed-Forward Networks):用于进一步处理自注意力层的输出,增加模型的非线性表达能力。
解码器(Decoder)

解码器负责生成输出序列。它也由多层组成,每层包含三个子层:

  1. 掩码的多头自注意力机制(Masked Multi-head Self-Attention):在生成序列时,只允许解码器关注到之前的元素,防止未来信息泄露。
  2. 多头注意力机制(Multi-head Attention):用于将编码器的输出与解码器的输入相结合,帮助模型在生成输出时考虑输入序列的信息。
  3. 前馈神经网络:类似于编码器中的前馈网络,用于增加模型的非线性映射能力。

Transformer的关键特性

  • 自注意力机制:使得模型能够在处理序列时,同时考虑到序列中所有位置的信息,而不是仅依赖于序列的顺序。
  • 位置编码:由于Transformer没有内置的概念来感知序列中的位置信息(如RNN中的时间步),因此使用了位置编码来注入位置信息,使模型能够区分序列中不同位置的词。
  • 并行计算:自注意力机制允许模型并行处理序列中的每一个元素,大大提升了训练速度。

应用领域

Transformer模型在多个NLP任务中取得了卓越的成绩,包括但不限于:

  • 机器翻译
  • 文本生成
  • 问答系统
  • 语义分析
  • 情感分析
  • 命名实体识别

此外,Transformer模型的变体,如BERT、GPT系列、RoBERTa等,已经成为NLP领域的主流技术,推动了自然语言理解(NLU)和自然语言生成(NLG)技术的发展。

标签:Transformer,模型,编码器,解码器,序列,注意力
From: https://blog.csdn.net/MAMA6681/article/details/140136295

相关文章

  • 【基于星火大模型的群聊对话分角色要素提取BaseLine学习笔记】
    @目录项目背景项目任务我的思路Baseline详解数据抽取完整代码星火认知大模型Spark3.5Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看星火......
  • python系列&deep_study系列:Whisper——部署fast-whisper中文语音识别模型
    Whisper——部署fast-whisper中文语音识别模型Whisper——部署fast-whisper中文语音识别模型环境配置准备tiny模型模型转换代码Whisper——部署fast-whisper中文语音识别模型whisper:https://github.com/openai/whisper/tree/main参考文章:WhisperOpenAI开源语音......
  • 低资源语言的Transformer挑战:探索与机遇
    低资源语言的Transformer挑战:探索与机遇在自然语言处理(NLP)的广阔领域中,低资源语言(也称为小种语言或少数民族语言)面临着独特的挑战。尽管Transformer模型在高资源语言上取得了巨大成功,但其在低资源语言上的应用仍然充满挑战。本文将深入探讨这些挑战,并探索可能的解决方案。......
  • 【electron-vite+live2d+vue3+element-plus】实现桌面模型宠物+桌面管理系统应用(踩坑)
    脚手架项目使用electron-vite脚手架搭建ps:还有一个框架是electron-vite,这个框架我发现与pixi库有冲突,无法使用,如果不用pixi也可以用这个脚手架。node版本建议18+----------------------------------------------------------------------------------------运行live2D......
  • R语言逻辑回归、随机森林、SVM支持向量机预测Framingham心脏病风险和模型诊断可视化
    原文链接:http://tecdat.cn/?p=24973 原文出处:拓端数据部落公众号简介世界卫生组织估计全世界每年有1200万人死于心脏病。在美国和其他发达国家,一半的死亡是由于心血管疾病。心血管疾病的早期预后可以帮助决定改变高危患者的生活方式,从而减少并发症。本研究旨在查明心脏病最......
  • NWIFI.SYS 的底层原理主要围绕着操作系统驱动程序模型的实现,确保无线网络适配器与操作
    NWIFI.SYS是一个Windows操作系统中的驱动程序文件,其底层原理涉及操作系统与硬件之间的交互和数据处理。以下是其底层原理的一些关键点:驱动程序功能:NWIFI.SYS主要负责管理和控制无线网络适配器。它通过操作系统提供的驱动程序接口(DriverInterface)与硬件通信,执行一系列操作,......
  • YOLOv10全网最新创新点改进系列:YOLOv10+ICCV 2023 - 动态蛇形卷积(Dynamic Snake Convo
    YOLOv10全网最新创新点改进系列:YOLOv10+ICCV2023-动态蛇形卷积(DynamicSnakeConvolution)采用管状结构,拉升模型小目标、遮挡目标检测效果!所有改进代码均经过实验测试跑通!截止发稿时YOLOv10已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注A......
  • 快速调用 GLM-4-9B-Chat 语言模型
    一、确认本机显卡配置二、下载大模型国内可以从魔搭社区下载,下载地址:https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/files  三、运行官方代码 importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizerdevice="cuda"tokenizer=Aut......
  • 数业智能荣登「全球应用算法模型大赛50强」
    近日,由上海市经济和信息化委员会、上海市普陀区人民政府,上海市人工智能行业协会主办,上海人工智能研究院等单位联合承办的《BPAA第四届全球应用算法模型典范大赛》经过一个多月的角逐,最终公布《BPAA第四届全球应用算法模型典范大赛TOP50榜单》。数业智能心大陆凭借独立自研的多模态......
  • 对Transformer的一些理解
    在学习Transformer这个模型前对seq2seq架构有个了解时很有必要的先上图输入和输出首先理解模型时第一眼应该理解输入和输出最开始我就非常纠结有一个Inputs,一个Outputs(shiftright)和一个OutputProbabilities,首先需要借助这三个输入/输出来初步了解该模型的运行方式。这......