首页 > 其他分享 >大语言模型中上下文窗口理解和实现原理

大语言模型中上下文窗口理解和实现原理

时间:2024-06-18 11:55:20浏览次数:27  
标签:窗口 语言 词元 模型 上下文 注意力

本文由 ChatMoney团队出品

  1. 上下文窗口含义及其作用
    上下文窗口就像是语言模型在阅读和写作时使用的一个“记忆窗口”。想象一下你在读一本书的时候,为了理解某个句子,你可能需要回顾前面的一两句话来抓住它们之间的联系。同样,语言模型在预测或生成文本时,也需要查看前面的一定数量的词元或文本片段,这个范围就是上下文窗口。用大白话说,就是在大模型对话中,将你要提前问的话和之前提问的话都发给大模型,更能让大模型分析出你提问时候需要的具体答案。
    上下文窗口的大小对于模型来说非常关键。如果窗口太小,模型可能会错过重要的上下文信息,导致理解错误或生成不连贯的文本。就像只看一个句子中的一部分,你可能无法完全理解整个句子的意思。但如果窗口太大,模型可能会处理过多的信息,这可能会导致效率低下,甚至可能引入不必要的噪音。就像一次性阅读一整章,虽然能得到很多信息,但可能会感到信息过载,难以快速抓住重点。
    因此,上下文窗口的大小需要恰到好处,这样模型才能既捕捉到足够的上下文信息,又不会因为信息过多而感到困扰。这样,模型就能更好地理解前文的内容,并据此生成或预测出更加准确和连贯的文本。
  2. 大语言上下文窗口实现原理
    大语言上下文窗口(Large Language Model Context Windows)是自然语言处理(NLP)中的一种技术,它允许模型在处理文本时能够考虑到更大的上下文范围。这对于理解长篇文本、文档、书籍等是非常有用的。大语言上下文窗口的实现原理涉及到几个关键技术点:
  3. 注意力机制(Attention Mechanism):这是大语言上下文窗口实现的核心。注意力机制允许模型在处理一个词时,能够考虑到文本中的其他相关词。在大语言模型中,这种机制被扩展,使得模型能够考虑到更远的上下文。
  4. 长短期记忆(Long Short-Term Memory,LSTM)或门控循环单元(Gated Recurrent Unit,GRU):这些是特殊的循环神经网络(RNN)架构,它们设计用来处理长期依赖问题。在大语言上下文窗口中,这些架构能够帮助模型记住和利用较远上下文的信息。
  5. Transformer和自注意力(Self-Attention):Transformer模型及其自注意力机制是大语言上下文窗口实现的另一个关键。自注意力机制允许模型在处理每个词时,同时考虑到文本中的所有其他词,而不仅仅是邻近的词。这使得模型能够捕捉到更广泛的上下文信息。
  6. 位置编码(Positional Encoding):在Transformer模型中,由于没有循环神经网络的递归结构,因此需要一种方法来表示词在文本中的位置。位置编码提供了这种信息,帮助模型理解词的顺序和相对位置。
  7. 稀疏注意力模式(Sparse Attention Patterns):为了处理非常大的上下文窗口,一些研究提出了稀疏注意力模式。这些模式通过只关注部分关键上下文,而不是整个窗口,来减少计算和内存的需求。
  8. 内存机制(Memory Mechanisms):某些模型使用内存机制来存储和检索长期信息。这允许模型在需要时访问存储在内存中的信息,从而更好地处理大语言上下文窗口。
    通过这些技术,大语言上下文窗口能够实现更深入、全面地理解文本,提高模型在处理长篇文档时的性能。
    我们以其中Transformer和自注意力机制来解释其中的实现原理:
    注意力机制是Transformer模型中的一个关键概念,它模拟了人类在理解语言时关注不同词汇的能力。例如,在处理如下两个句子时,人类的思维能够迅速识别出“苹果”的不同含义:
  9. 我昨天去买了一部小米手机,新手机确实流畅。
  10. 我昨天去超市买了一袋小米,煮出来小米粥味道确实很好。
    在第一个句子中,"小米"指的是一个手机品牌,而在第二个句子中,它是一种食品。人类能够做出这种区分,是因为我们注意到了句子中的"一部"、"手机"、"流畅"、"一袋","超市"、"米粥"、"好吃"等关键词。在大语言模型中,处理这些句子时也会采用类似的策略,并称之为"注意力机制"。
    大语言模型在处理语音时,实际上是将语言分割成一些词元(tokens),例如,第一个句子可以分割为"我"、"昨天"、"去"、"买了"、"一部"、"小米"、"手机"、"确实"、"流畅"等。然后,模型会计算这些词元的注意力值。在这个例子中,可能"小米"、"手机"和"流畅"这几个词元的注意力值较大,因此模型能够分析出"小米"的真实含义。
    在实现这些词元的注意力时,大语言模型的处理方式大致如下:首先将"我"与其他词元进行比较,然后是"昨天"与其他词元进行比较,依此类推,直到比较完所有词元。通过这种方式,模型最终确定“与其他词元进行比较”在整句话中的注意力占比最大,然后依次分析出其他占比较大的词元,从而理解出这句话的意思。
    然而,这种词汇比较的过程可能会非常复杂。例如,如果一个句子中有10个词元,那么就需要进行1010次计算,即100次计算。对于包含1000个词元的句子,就需要进行10001000次计算。总的来说,对于包含n个词元的句子,需要进行n的平方次注意力计算,随着上下文窗口的增大,模型的计算复杂度和内存需求也会增加,这可能导致计算效率降低。其次,长文本中可能存在许多不相关的信息,如果上下文窗口过大,模型可能会受到这些无关信息的干扰,从而影响生成或预测的准确性。此外,长文本中的上下文依赖性可能更加复杂,模型需要更有效地捕捉和利用这些依赖性,以提高生成或预测的质量。所以这就是为什么AI厂家发一个新模型时候为什么要特意的强调上下文窗的长度来作为卖点的原因。
    关于我们
    本文由ChatMoney团队出品,ChatMoney专注于AI应用落地与变现,我们提供全套、持续更新的AI源码系统与可执行的变现方案,致力于帮助更多人利用AI来变现,欢迎进入ChatMoney获取更多AI变现方案!
    官网链接:https://chatmoney.cn/?utm_source=xfen

标签:窗口,语言,词元,模型,上下文,注意力
From: https://www.cnblogs.com/chatrun/p/18254048

相关文章

  • 大语言模型中上下文窗口理解和实现原理
    本文由ChatMoney团队出品上下文窗口含义及其作用上下文窗口就像是语言模型在阅读和写作时使用的一个“记忆窗口”。想象一下你在读一本书的时候,为了理解某个句子,你可能需要回顾前面的一两句话来抓住它们之间的联系。同样,语言模型在预测或生成文本时,也需要查看前面的一定数量的......
  • Transformer模型代码(详细注释,适合新手)
    #Hyperparametersbatch_size=4#Howmanybatchespertrainingstepcontext_length=16#Lengthofthetokenchunkeachbatchd_model=64#Thesizeofourmodeltokenembeddingsnum_blocks=8#Numberoftransformerblocksnum_heads=4#Numbe......
  • stable-diffusion-3-medium 大模型下载地址
    由于huggingface.co下载速度不佳,放在夸克网盘上了:https://pan.quark.cn/s/6ab1885c2e51 有条件的可以从huggingface下载:https://huggingface.co/stabilityai/stable-diffusion-3-medium/tree/main StableDiffusion3Medium是基于OpenAI的扩散模型理论基础之上发展的......
  • 大型语言模型的“不知道”:一种新的不确定性敏感训练方法
    大型语言模型(LLMs)在各种任务中展现出惊人的能力,但仍然面临着诸如幻觉等挑战。幻觉是指LLMs生成与事实不符或毫无意义的响应。造成幻觉的一个潜在原因是缺乏相关知识或上下文。因此,一个很有前景的解决方案是指示LLMs在问题超出其知识范围或提供的上下文时,回答“我不知道”。......
  • LLM大模型: DPO原理和源码解析
     1、前段时间国外某大学反向抄袭国内某团队的大模型闹得沸沸扬扬,国内被抄袭的大模型是MiniCPM,详细资料:https://github.com/OpenBMB/MiniCPM;能被国外同行抄袭,必定有过人之处,粗略看了一下https://github.com/OpenBMB/MiniCPM/blob/main/model/modeling_minicpm.py模型文件,发......
  • 单相异步电动机的建模仿真(3)基于空间向量和混合磁链数学模型
    目录1.引言2.混合磁链数学模型3.基于混合磁链数学模型的Simulink仿真模型4.空间向量数学模型5.基于空间矢量数学模型的Simulink仿真模型6.仿真实例7.总结1.引言    不同的数学模型形式可以提供不同的视角和分析方法,这对于电机的设计、控制和故障诊断......
  • 英伟达最新发布:Nemotron-4-340B模型家族
        英伟达于2024年6月14日发布的一款开源大型语言模型(LLM)Nemotron-4340B模型家族(Nemotron-4-340B-Base(基础模型)、Nemotron-4-340B-Instruct(指令模型)、Nemotron-4-340B-Reward(奖励模型)),具有3400亿参数,在NVIDIA开放模型许可协议下开放访问,允许分发、修改和使用这些模型......
  • 微调大模型 - 面向学术论文的AI大模型
    1、优化学术交流:该项目专注于优化学术文献的阅读、润色和写作过程,提供了实用化的交互接口。2、模块化和可扩展性:项目设计模块化,支持自定义快捷按钮和函数插件,便于用户根据自己的需求进行扩展。3、多语言和多模型支持:支持多种语言的论文翻译和总结,同时可以并行问询多种......
  • 多模态大模型:识别和处理图片与视频的技术详解
    随着人工智能和深度学习技术的快速发展,多模态大模型在识别和处理图片与视频方面展现出了强大的能力。多模态大模型能够处理多种形式的数据,包括文本、图像、视频、音频等,从而实现更智能、更全面的理解与应用。本文将详细介绍多模态大模型是如何识别和处理图片与视频的。1.......
  • AI 大模型训练中,通常会采用哪些方法?(输入篇)
    某种程度来说大模型训练的核心算法就是300到400行代码,如果真正理解了并不难。下面我将带大家分析常规大模型训练有几个阶段以及在训练中一般会用到哪些方法。由上图可以看出,大模型训练主要有四个阶段:预训练、有监督微调、奖励建模、强化学习。开始的第一个阶段是预训练阶......