429.N叉树的层序遍历
题意描述:
给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。
例如,给定一个 3叉树 :
返回其层序遍历:
[ [1], [3,2,4], [5,6] ]
思路:
AC代码:
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size();
vector<int> vec;
for (int i = 0; i < size; i++) {
Node* node = que.front();
que.pop();
vec.push_back(node->val);
for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
if (node->children[i]) que.push(node->children[i]);
}
}
result.push_back(vec);
}
return result;
}
};
515.在每个树行中找最大值
题意描述:
您需要在二叉树的每一行中找到最大的值。
思路:
层序遍历,取每一层的最大值
AC代码:
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<int> result;
while (!que.empty()) {
int size = que.size();
int maxValue = INT_MIN; // 取每一层的最大值
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
// maxValue = node->val > maxValue ? node->val : maxValue;
maxValue = max(node -> val , maxValue);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(maxValue); // 把最大值放进数组
}
return result;
}
};
16.填充每个节点的下一个右侧节点指针
题意描述:
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node { int val; Node *left; Node *right; Node *next; }
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
思路:
本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了
AC代码:
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
// vector<int> vec;
Node* nodePre;
Node* node;
for (int i = 0; i < size; i++) {
if (i == 0) {
nodePre = que.front(); // 取出一层的头结点
que.pop();
node = nodePre;
} else {
node = que.front();
que.pop();
nodePre->next = node; // 本层前一个节点next指向本节点
nodePre = nodePre->next;
}
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
nodePre->next = NULL; // 本层最后一个节点指向NULL
}
return root;
}
};
[104.二叉树的最大深度](104. 二叉树的最大深度 - 力扣(LeetCode))
题意描述:
给定一个二叉树
root
,返回其最大深度。二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入:root = [3,9,20,null,null,15,7] 输出:3
示例 2:
输入:root = [1,null,2] 输出:2
提示:
- 树中节点的数量在
[0, 104]
区间内。-100 <= Node.val <= 100
思路:
使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数,和层序遍历的方式极其吻合。
AC代码:
class Solution {
public:
int maxDepth(TreeNode* root) {
queue<TreeNode*> que;
if(root != NULL) que.push(root);
int maxDepth = 0;
while(!que.empty()){
int size = que.size();
for(int i = 0 ; i < size ; i++){
TreeNode* node = que.front();
que.pop();
if(node -> left) que.push(node -> left);
if(node -> right) que.push(node -> right);
}
maxDepth ++;
}
return maxDepth;
}
};
111.二叉树的最小深度
题意描述:
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例 1:
输入:root = [3,9,20,null,null,15,7] 输出:2
示例 2:
输入:root = [2,null,3,null,4,null,5,null,6] 输出:5
提示:
- 树中节点数的范围在
[0, 105]
内-1000 <= Node.val <= 1000
思路:
相对于 104.二叉树的最大深度 ,本题还也可以使用层序遍历的方式来解决,思路是一样的。
需要注意的是,只有当左右孩子都为空的时候,才说明遍历的最低点了。如果其中一个孩子为空则不是最低点
AC代码:
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == NULL) return 0;
int depth = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()) {
int size = que.size();
depth++; // 记录最小深度
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
return depth;
}
}
}
return depth;
}
};
226.翻转二叉树
题意描述:
给你一棵二叉树的根节点
root
,翻转这棵二叉树,并返回其根节点。示例 1:
输入:root = [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1]
示例 2:
输入:root = [2,1,3] 输出:[2,3,1]
示例 3:
输入:root = [] 输出:[]
提示:
- 树中节点数目范围在
[0, 100]
内-100 <= Node.val <= 100
这道题目背后有一个让程序员心酸的故事,听说 Homebrew的作者Max Howell,就是因为没在白板上写出翻转二叉树,最后被Google拒绝了。(真假不做判断,权当一个乐子哈)
思路:
标签:node,遍历,层序,6.16,que,二叉树,push,root,节点 From: https://www.cnblogs.com/7dragonpig/p/18251364我们之前介绍的都是各种方式遍历二叉树,这次要翻转了,感觉还是有点懵逼。
这得怎么翻转呢?
如果要从整个树来看,翻转还真的挺复杂,整个树以中间分割线进行翻转,如图:
可以发现想要翻转它,其实就把每一个节点的左右孩子交换一下就可以了。
关键在于遍历顺序,前中后序应该选哪一种遍历顺序? (一些同学这道题都过了,但是不知道自己用的是什么顺序)
遍历的过程中去翻转每一个节点的左右孩子就可以达到整体翻转的效果。
注意只要把每一个节点的左右孩子翻转一下,就可以达到整体翻转的效果
这道题目使用前序遍历和后序遍历都可以,唯独中序遍历不方便,因为中序遍历会把某些节点的左右孩子翻转了两次!建议拿纸画一画,就理解了
那么层序遍历可以不可以呢?依然可以的!只要把每一个节点的左右孩子翻转一下的遍历方式都是可以的!
递归法
对于二叉树的递归法的前中后序遍历,已经在二叉树:前中后序递归遍历 (opens new window)详细讲解了。
我们下文以前序遍历为例,通过动画来看一下翻转的过程:
我们来看一下递归三部曲:
- 确定递归函数的参数和返回值
参数就是要传入节点的指针,不需要其他参数了,通常此时定下来主要参数,如果在写递归的逻辑中发现还需要其他参数的时候,随时补充。
返回值的话其实也不需要,但是题目中给出的要返回root节点的指针,可以直接使用题目定义好的函数,所以就函数的返回类型为
TreeNode*
。TreeNode* invertTree(TreeNode* root)
- 确定终止条件
当前节点为空的时候,就返回
if (root == NULL) return root;
- 确定单层递归的逻辑
因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
swap(root->left, root->right); invertTree(root->left); invertTree(root->right);
基于这递归三步法,代码基本写完,C++代码如下:
class Solution { public: TreeNode* invertTree(TreeNode* root) { if (root == NULL) return root; swap(root->left, root->right); // 中 invertTree(root->left); // 左 invertTree(root->right); // 右 return root; } };
迭代法
深度优先遍历
迭代法(前序遍历)
class Solution { public: TreeNode* invertTree(TreeNode* root) { if (root == NULL) return root; stack<TreeNode*> st; st.push(root); while(!st.empty()) { TreeNode* node = st.top(); // 中 st.pop(); swap(node->left, node->right); if(node->right) st.push(node->right); // 右 if(node->left) st.push(node->left); // 左 } return root; } };
如果这个代码看不懂的话可以再回顾一下二叉树:听说递归能做的,栈也能做! (opens new window)。
我们在二叉树:前中后序迭代方式的统一写法 (opens new window)中介绍了统一的写法,所以,本题也只需将文中的代码少做修改便可。
迭代法统一写法(前序遍历)
class Solution { public: TreeNode* invertTree(TreeNode* root) { stack<TreeNode*> st; if (root != NULL) st.push(root); while (!st.empty()) { TreeNode* node = st.top(); if (node != NULL) { st.pop(); if (node->right) st.push(node->right); // 右 if (node->left) st.push(node->left); // 左 st.push(node); // 中 st.push(NULL); } else { st.pop(); node = st.top(); st.pop(); swap(node->left, node->right); // 节点处理逻辑 } } return root; } };
如果上面这个代码看不懂,回顾一下文章二叉树:前中后序迭代方式的统一写法 (opens new window)。
广度优先遍历
也就是层序遍历,层数遍历也是可以翻转这棵树的,因为层序遍历也可以把每个节点的左右孩子都翻转一遍,代码如下:
class Solution { public: TreeNode* invertTree(TreeNode* root) { queue<TreeNode*> que; if (root != NULL) que.push(root); while (!que.empty()) { int size = que.size(); for (int i = 0; i < size; i++) { TreeNode* node = que.front(); que.pop(); swap(node->left, node->right); // 节点处理 if (node->left) que.push(node->left); if (node->right) que.push(node->right); } } return root; } };
如果对以上代码不理解,或者不清楚二叉树的层序遍历,可以看这篇二叉树:层序遍历登场!(opens new window)
拓展
递归的中序遍历是不行的,因为某些节点的左右孩子会翻转两次。
如果非要使用递归中序的方式写,也可以,如下代码就可以避免节点左右孩子翻转两次的情况:
class Solution { public: TreeNode* invertTree(TreeNode* root) { if (root == NULL) return root; invertTree(root->left); // 左 swap(root->left, root->right); // 中 invertTree(root->left); // 注意 这里依然要遍历左孩子,因为中间节点已经翻转了 return root; } };
代码虽然可以,但这毕竟不是真正的递归中序遍历了。
但使用迭代方式统一写法的中序是可以的。
代码如下:
class Solution { public: TreeNode* invertTree(TreeNode* root) { stack<TreeNode*> st; if (root != NULL) st.push(root); while (!st.empty()) { TreeNode* node = st.top(); if (node != NULL) { st.pop(); if (node->right) st.push(node->right); // 右 st.push(node); // 中 st.push(NULL); if (node->left) st.push(node->left); // 左 } else { st.pop(); node = st.top(); st.pop(); swap(node->left, node->right); // 节点处理逻辑 } } return root; } };
为什么这个中序就是可以的呢,因为这是用栈来遍历,而不是靠指针来遍历,避免了递归法中翻转了两次的情况,大家可以画图理解一下,这里有点意思的。
总结
针对二叉树的问题,解题之前一定要想清楚究竟是前中后序遍历,还是层序遍历。
二叉树解题的大忌就是自己稀里糊涂的过了(因为这道题相对简单),但是也不知道自己是怎么遍历的。
这也是造成了二叉树的题目“一看就会,一写就废”的原因。
针对翻转二叉树,我给出了一种递归,三种迭代(两种模拟深度优先遍历,一种层序遍历)的写法,都是之前我们讲过的写法,融汇贯通一下而已。