插入数据后的效果:
代码如下:
import configparser from pymilvus import connections, Collection, DataType, FieldSchema, CollectionSchema import numpy as np def create_collection(): # Define the schema fields = [ FieldSchema(name="sentence_id", dtype=DataType.INT64, is_primary=True, auto_id=True), FieldSchema(name="sentence", dtype=DataType.VARCHAR, max_length=512), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128) ] schema = CollectionSchema(fields, description="Sentence collection") # Create the collection collection = Collection(name="sentence_collection", schema=schema) return collection def insert_data(collection): sentences = [ "这是第一句。", "这是第二句。", "这是第三句。" ] embeddings = np.random.rand(len(sentences), 128).tolist() # Generate 128-dimensional vectors entities = [ sentences, embeddings ] insert_result = collection.insert(entities) print(f"Inserted {len(insert_result.primary_keys)} records into collection.") def create_index(collection): index_params = { "index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2" } collection.create_index(field_name="embedding", index_params=index_params) print("Index created.") def search_data(collection, query_sentence): query_embedding = np.random.rand(1, 128).tolist() # Generate a vector for the query sentence search_params = {"metric_type": "L2", "params": {"nprobe": 10}} results = collection.search( data=query_embedding, anns_field="embedding", param=search_params, limit=3, expr=None, output_fields=["sentence"] ) for hits in results: for hit in hits: print(f"Match found: {hit.id} with distance: {hit.distance}, sentence: {hit.entity.get('sentence')}") if __name__ == '__main__': # Connect to Milvus cfp = configparser.RawConfigParser() cfp.read('config.ini') milvus_uri = cfp.get('example', 'uri') token = cfp.get('example', 'token') connections.connect("default", uri=milvus_uri, token=token) print(f"Connecting to DB: {milvus_uri}") # Create collection collection = create_collection() # Insert data insert_data(collection) # Create index create_index(collection) # Load the collection into memory collection.load() # Search data search_data(collection, "这是一个查询句子。")
运行效果:
python hello_zilliz_vectordb.py
Connecting to DB: https://in03-ca69f49bb65709f.api.gcp-us-west1.zillizcloud.com
Inserted 3 records into collection.
Index created.
Match found: 450140263656791260 with distance: 19.557846069335938, sentence: 这是第二句。
Match found: 450140263656791261 with distance: 20.327802658081055, sentence: 这是第三句。
Match found: 450140263656791259 with distance: 20.40052032470703, sentence: 这是第一句。
注意事项:
- 向量转换:上面的代码使用了随机向量来模拟句子向量。在实际应用中,您需要使用 NLP 模型(例如中文 BERT)来将中文句子转换为向量。
- 字符编码:确保在读取和处理中文文本时使用正确的字符编码(通常是 UTF-8)。