PEFT(Performance Estimation for Fine-Tuning)和全量微调(Full Fine-Tuning)是两种不同的微调方法,它们在性能估计和实际微调过程中的数据使用上存在一些区别。而PEFT则通过性能估计和建模的方式,避免了在完整数据集上进行实验的过程。PEFT使用一部分样本数据来训练性能估计模型,然后利用该模型对未知数据的性能进行预测。相比之下,PEFT通过性能估计和建模的方式,避免了在完整数据集上进行实验的过程,从而节省了时间和计算开销。PEFT通过性能估计和建模的方式,可以预测模型在未知数据上的性能。虽然PEFT的性能预测准确性可能不如全量微调,但可以提供一个相对准确的性能指标,帮助研究人员和从业者更好地理解模型的性能。综上所述,PEFT和全量微调在数据使用、时间和计算开销以及性能预测准确性等方面存在一些区别。选择使用哪种方法应根据具体情况和需求来决定。
时间和计算开销:全量微调需要在完整数据集上进行训练和调优,耗费大量时间和计算资源。尤其是在大规模数据集和复杂模型的情况下,全量微调的时间和计算开销会更大。
数据使用:全量微调使用完整的微调数据集进行模型的训练和调优。这意味着需要在大规模数据集上进行昂贵的实验,耗费大量时间和计算资源。
性能预测准确性:全量微调通过在完整数据集上进行训练和调优,可以获得较为准确的性能指标。因为全量微调是在实际数据上进行的,所以能够更好地反映模型在真实场景中的性能。
AI科技智库
标签:AI,性能,微调,全量,PEFT,数据 From: https://blog.csdn.net/aigchouse/article/details/139514412