首页 > 其他分享 >ClickHouse内幕(3)基于索引的查询优化

ClickHouse内幕(3)基于索引的查询优化

时间:2024-06-11 10:45:53浏览次数:24  
标签:distinct 查询 索引 算法 算子 优化 order ClickHouse

ClickHouse索引采用唯一聚簇索引的方式,即Part内数据按照order by keys有序,在整个查询计划中,如果算子能够有效利用输入数据的有序性,对算子的执行性能将有巨大的提升。本文讨论ClickHouse基于索引的查询算子优化方式。

在整个查询计划中Sort、Distinct、聚合这3个算子相比其他算子比如:过滤、projection等有如下几个特点:1.算子需要再内存中保存状态,内存代价高;2.算子计算代价高;3.算子会阻断执行pipeline,待所有数据计算完整后才会向下游输出数据。所以上算子往往是整个查询的瓶颈算子。

本文详细讨论,3个算子基于索引的查询优化前后,在计算、内存和pipeline阻断上的影响。

实验前准备:

后续的讨论主要基于实验进行。

CREATE TABLE test_in_order
(
    `a` UInt64,
    `b` UInt64,
    `c` UInt64,
    `d` UInt64
)
ENGINE = MergeTree
ORDER BY (a, b);

表中总共有3个part,每个part数据量4条。

PS: 用户可以在插入数据前提前关闭后台merge,以避免part合并成一个,如果part合并成一个将影响查询并行度,可能对实验有影响,以下查询可以关闭后台merge:system stop merges test_in_order

一、Sort算子

如果order by查询的order by字段与表的order by keys的前缀列匹配,那么可以根据数据的有序特性对Sort算子进行优化。

1.Sort算子实现方式

首先看下不能利用主键有序性的场景,即对于order by查询的order by字段与表的order by keys的前缀列不匹配。比如下面的查询:

query_1: EXPLAIN PIPELINE SELECT b FROM read_in_order ORDER BY b ASC

它的执行计划如下:

┌─explain───────────────────────────────┐
│ (Expression)                          │
│ ExpressionTransform                   │
│   (Sorting)                           │
│   MergingSortedTransform 3 → 1        │
│     MergeSortingTransform × 3         │
│       LimitsCheckingTransform × 3     │
│         PartialSortingTransform × 3   │
│           (Expression)                │
│           ExpressionTransform × 3     │
│             (ReadFromMergeTree)       │
│             MergeTreeThread × 3 0 → 1 │
└───────────────────────────────────────┘

排序算法由3个Transform组成,其中

1)PartialSortingTransform对单个Chunk进行排序;

2)MergeSortingTransform对单个stream进行排序;

3)MergingSortedTransform合并多个有序的stream进行全局sort-merge排序

 


 

如果查询的order by字段与表的order by keys的前缀列匹配,那么可以根据数据的有序特性对查询进行优化,优化开关:optimize_read_in_order。

2.匹配索引列的查询

以下查询的order by字段与表的order by keys的前缀列匹配

query_3: EXPLAIN PIPELINE SELECT b FROM test_in_order ORDER BY a ASC, b ASCSETTINGS optimize_read_in_order = 0 -- 关闭read_in_order优化

查看order by语句的pipeline执行计划

┌─explain───────────────────────────┐
│ (Expression)                      │
│ ExpressionTransform               │
│   (Sorting)                       │
│   MergingSortedTransform 3 → 1    │
│     MergeSortingTransform × 3     │
│       (Expression)                │
│       ExpressionTransform × 3     │
│         (ReadFromMergeTree)       │
│         MergeTreeThread × 3 0 → 1 │
└───────────────────────────────────┘

此时order by算子的算法

1)首先MergeSortingTransform对输入的stream进行排序

2)然后MergingSortedTransform将多个排好序的stream进行合并,并输出一个整体有序的stream,也是最终的排序结果。

这里有个疑问在关闭read_in_order优化的查询计划中,系统直接默认了MergeSortingTransform的输入在Chunk内是有序的,这里其实是一个默认优化,因为order by查询的order by字段与表的order by keys的前缀列匹配,所以数据在Chunk内部一定是有序的。

3. 开启优化optimize_read_in_order

┌─explain──────────────────────────┐
│ (Expression)                     │
│ ExpressionTransform              │
│   (Sorting)                      │
│   MergingSortedTransform 3 → 1   │
│     (Expression)                 │
│     ExpressionTransform × 3      │
│       (ReadFromMergeTree)        │
│       MergeTreeInOrder × 3 0 → 1 │
└──────────────────────────────────┘

4. 优化分析

打开optimize_read_in_order后:

1.对于计算方面:算法中只有一个MergingSortedTransform,省略了单个stream内排序的步骤 2.由于内存方面:由于MergeSortingTransform是消耗内存最大的步骤,所以优化后可以节约大量的内存 3.对于poipeline阻塞:MergeSortingTransform会阻塞整个pipeline,所以优化后也消除了对pipeline的阻塞

二、Distinct算子

如果distinct查询的distinct字段与表的order by keys的前缀列匹配,那么可以根据数据的有序特性对Distinct算子进行优化,优化开关:optimize_distinct_in_order。通过以下实验进行说明:

1. Distinct算子实现方式

查看distinct语句的pipeline执行计划

query_2: EXPLAIN PIPELINE SELECT DISTINCT * FROM woo.test_in_order SETTINGS optimize_distinct_in_order = 0 -- 关闭distinct in order优化
┌─explain─────────────────────────────┐
│ (Expression)                        │
│ ExpressionTransform                 │
│   (Distinct)                        │
│   DistinctTransform                 │
│     Resize 3 → 1                    │
│       (Distinct)                    │
│       DistinctTransform × 3         │
│         (Expression)                │
│         ExpressionTransform × 3     │
│           (ReadFromMergeTree)       │
│           MergeTreeThread × 3 0 → 1 │
└─────────────────────────────────────┘

Distinct算子采用两阶段的方式,首先第一个DistinctTransform在内部进行初步distinct,其并行度为3,可以简单的认为有3个线程在同时执行。然后第二个DistinctTransform进行final distinct。

每个DistinctTransform的计算方式为:首先构建一个HashSet数据结构,然后根据HashSet,构建一个Filter Mask(如果当前key存在于HashSet中,则过滤掉),最后过滤掉不需要的数据。

2.开启优化optimize_distinct_in_order

┌─explain────────────────────────────────┐
│ (Expression)                           │
│ ExpressionTransform                    │
│   (Distinct)                           │
│   DistinctTransform                    │
│     Resize 3 → 1                       │
│       (Distinct)                       │
│       DistinctSortedChunkTransform × 3 │
│         (Expression)                   │
│         ExpressionTransform × 3        │
│           (ReadFromMergeTree)          │
│           MergeTreeThread × 3 0 → 1    │
└────────────────────────────────────────┘

可以看到初步distinct和final distinct采用了不同的transform,DistinctSortedChunkTransform和DistinctTransform。

DistinctSortedChunkTransform:对单个stream内的数据进行distinct操作,因为distinct列跟表的order by keys的前缀列匹配,scan算子读取数据的时候一个stream只从一个part内读取数据,那么每个distinct transform输入的数据就是有序的。所以distinct算法有:

DistinctSortedChunkTransform算法一:

Transform中保留最后一个输入的数据作为状态,对于每个输入的新数据如果跟保留的状态相同,那么忽略,如果不同则将上一个状态输出给上一个算子,然后保留当前的数据最为状态。这种算法对于在整个stream内部全局去重时间和空间复杂度都有极大的降低。

 


 

DistinctSortedStreamTransform算法二:(ClickHouse采用的)

Transform对与每个Chunk(ClickHouse中Transform数据处理的基本单位,默认大约6.5w行),首先将相同的数据划分成多个Range,并设置一个mask数组,然后将相同的数据删除掉,最后返回删除重复数据的Chunk。

 


 

3. 优化分析

打开optimize_distinct_in_order后:主要对于第一阶段的distinct步骤进行了优化,从基于HashSet过滤的算法到基于连续相同值的算法。

1.对于计算方面:优化后的算法,省去了Hash计算,但多了判断相等的步骤,在不同数据基数集大小下,各有优劣。 2.由于内存方面:优化后的算法,不需要存储HashSet 3.对于poipeline阻塞:优化前后都不会阻塞pipeline

三、聚合算子

如果group by查询的order by字段与表的order by keys的前缀列匹配,那么可以根据数据的有序特性对聚合算子进行优化,优化开关:optimize_aggregation_in_order。

1.聚合算子实现方式

查看group by语句的pipeline执行计划:

query_4: EXPLAIN PIPELINE SELECT a FROM test_in_order GROUP BY a SETTINGS optimize_aggregation_in_order = 0 -- 关闭read_in_order优化
┌─explain─────────────────────────────┐
│ (Expression)                        │
│ ExpressionTransform × 8             │
│   (Aggregating)                     │
│   Resize 3 → 8                      │
│     AggregatingTransform × 3        │
│       StrictResize 3 → 3            │
│         (Expression)                │
│         ExpressionTransform × 3     │
│           (ReadFromMergeTree)       │
│           MergeTreeThread × 3 0 → 1 │
└─────────────────────────────────────┘

对于聚合算子的整体算法没有在执行计划中完整显示出来,其宏观上采用两阶段的聚合算法,其完整算法如下:1.AggregatingTransform进行初步聚合,这一步可以并行计算;2.ConvertingAggregatedToChunksTransform进行第二阶段聚合。(PS:为简化起见,忽略two level HashMap,和spill to disk的介绍)。

2.开启优化optimize_aggregation_in_order

执行计划如下:

┌─explain───────────────────────────────────────┐
│ (Expression)                                  │
│ ExpressionTransform × 8                       │
│   (Aggregating)                               │
│   MergingAggregatedBucketTransform × 8        │
│     Resize 1 → 8                              │
│       FinishAggregatingInOrderTransform 3 → 1 │
│         AggregatingInOrderTransform × 3       │
│           (Expression)                        │
│           ExpressionTransform × 3             │
│             (ReadFromMergeTree)               │
│             MergeTreeInOrder × 3 0 → 1        │
└───────────────────────────────────────────────┘

可以看到打开optimize_aggregation_in_order后aggregating算法由三个步骤组成:

1)首先AggregatingInOrderTransform会将stream内连续的相同的key进行预聚合,预聚合后在当前stream内相同keys的数据只会有一条;

2)FinishAggregatingInOrderTransform将接收到的多个stream内的数据进行重新分组使得输出的chunk间数据是有序的,假设前一个chunk中group by keys最大的一条数据是5,当前即将输出的chunk中没有大于5的数据;

3)MergingAggregatedBucketTransform的作用是进行最终的merge aggregating。

 


 

FinishAggregatingInOrderTransform的分组算法如下:

假设有3个stream当前算子会维护3个Chunk,每一次选取在当前的3个Chunk内找到最后一条数据的最小值,比如初始状态最小值是5,然后将3个Chunk内所有小于5的数据一次性取走,如此反复如果一个Chunk被取光,需要从改stream内拉取新的Chunk。

 


 

这种算法保证了每次FinishAggregatingInOrderTransform向下游输出的Chunk的最大值小于下一次Chunk的最小值,便于后续步骤的优化。

3.优化分析

打开optimize_aggregation_in_order后:主要对于第一阶段的聚合步骤进行了优化,从基于HashMap的算法到基于连续相同值的算法。

1.对于计算方面:优化后的算法,减少了Hash计算,但多了判断相等的步骤,在不同数据基数集大小下,各有优劣。

2.由于内存方面:优化前后无差别

3.对于poipeline阻塞:优化前后无差别

四、优化小结

在整个查询计划中Sort、Distinct、聚合这3个算子算子往往是整个查询的瓶颈算子,所以值得对其进行深度优化。ClickHouse通过利用算子输入数据的有序性,优化算子的算法或者选择不同的算法,在计算、内存和pipeline阻塞三个方面均有不同程度的优化。

标签:distinct,查询,索引,算法,算子,优化,order,ClickHouse
From: https://www.cnblogs.com/Jcloud/p/18241659

相关文章

  • Mybatis的查询功能
    MyBatis的各种查询功能如果查询出的数据只有一条,可以通过实体类对象接收List集合接收Map集合接收,如结果{password=123456,sex=男,id=1,age=23,username=admin}如果查询出的数据有多条,一定不能用实体类对象接收,会抛异常TooManyResultsException,可以通过实体类类型......
  • 情景题之小明的Linux实习之旅:linux实战练习1(上)【基础命令,权限修改,日志查询,进程管理...
    小明的Linux实习之旅:基础指令练习情景练习题背景介绍场景1:初识Linux,创建目录和文件场景2:权限管理,小明的权限困惑场景3:打包与解压,小明的备份操作场景4:使用Grep,小明的搜索技能场景5:系统服务管理,小明的首次接触场景6:进程管理,小明的多任务处理场景7:定时任务与系统状态场景8:d......
  • 如何判断 是否 需要 CSS 中的媒体查询
    以下是一些常见的使用媒体查询的场景:响应式布局:当设备的屏幕尺寸变化时,我们可以使用媒体查询来调整布局,以适应不同的屏幕尺寸。设备特性适配:我们可以使用媒体查询来检测设备的特性,如设备方向、分辨率、颜色能力等,并根据这些特性来应用不同的样式。优化打印样式:我们可......
  • 微信小程序源码-公交信息在线查询系统的计算机毕业设计(附源码+演示录像+LW)
    大家好!我是职场程序猿,感谢您阅读本文,欢迎一键三连哦。......
  • 微信小程序毕业设计-公交信息在线查询系统项目开发实战(附源码+演示视频+LW)
    大家好!我是岛上程序猿,感谢您阅读本文,欢迎一键三连哦。......
  • SSR技术:让搜索引擎爱上你的网站
    SSR在编程开发中通常指的是“Server-SideRendering”(服务器端渲染)。这是一种网页渲染技术,其核心思想是在服务器端完成页面的HTML结构渲染,然后将完整的HTML页面发送给客户端(浏览器)。这与传统的客户端渲染(Client-SideRendering,CSR)不同,后者通常只发送一个空的HTML页面和JavaS......
  • sql左连接查询时,右表的条件应该写在WHERE后面还是ON后面
    在SQL的左连接查询(LEFTJOIN)中,右表的条件应尽量写在ON子句后面。这是因为:ON子句:用于定义两个表之间的连接条件,决定了哪些行会从右表中选择出来与左表进行匹配。WHERE子句:用于过滤整个结果集,在连接操作完成之后应用。如果将针对右表的过滤条件放在WHERE子句而不是ON子句中,可能......
  • MySQL分页查询offset过大,Sql优化经验
    低性能版SELECT*FROMtablewherecondition1=0andcondition2=0andcondition3=-1andcondition4=-1orderbyidascLIMIT2000OFFSET50000当offset特别大时,这条语句的执行效率会明显减低,而且效率是随着offset的增大而降低的。原因为:MySQL并不是跳过offset......
  • MySQL之多表查询—行子查询
    一、引言上篇博客学习了列子查询。接下来学习子查询中的第三种——行子查询。行子查询1、概念子查询返回的结果是一行(当然可以是多列),这种子查询称为行子查询。2、常用的操作符=、<>(不等于)、IN、NOTIN接下来通过一个需求去演示和学习行子查询的用法。二、......
  • 数据库多表查询
    在对数据库进行多表查询时,我们需要将多个数据表联结起来,多表的联结主要有以下几种类型:1.左联结(leftjoin):联结结果保留左表中的全部数据2.右联结(rightjoin):联结结果保留右表中的全部数据3.内联结(innerjoin):取两个表中的共同数据使用好以上三种联结类型,我们将能够写出许多精彩复......