首页 > 其他分享 >CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)

CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)

时间:2022-10-18 20:04:06浏览次数:82  
标签:... github abs arxiv paper https pdf org CVPR2021


CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)_github

计算机视觉研究院专栏

作者:Edison_G

今年的CVPR也陆续被大家熟知,录取的paper也公布出来,大家有兴趣的可以深入了解自己感兴趣的领域。作为计算机视觉领域三大顶会之一,CVPR2021目前已公布了所有接收论文ID,一共有1663篇论文被接收,接收率为23.7%,虽然接受率相比去年有所上升,但竞争也是非常激烈。


CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)_计算机视觉_02


CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)_3d_03


首先我们先分享历年比较好的,然后分享今年最新最佳的paper!


​CVPR干货 | ATSS——最新技术的目标检测(文末源码下载)​


​CVPR2020最佳检测 | 带有注意力RPN和多关系检测器的小样本目标检测网络(提供源码和数据及下载)​


​代码实践 | CVPR2020——AdderNet(加法网络)迁移到检测网络(代码分享)​


​CVPR2020最佳新框架|大规模人脸表情识别(附源代码)​


​CVPR2020 | 用有噪声的学生网络进行自我训练提高ImageNet分类​


​CVPR2020 | 人脸识别基于通用表示学习(文末附有下载地址)​


​CVPR2020 | 超越MobileNetV3的轻量级网络(文末论文下载)​


CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)_计算机视觉_04


CVPR 2021


致力于计算机视觉和模式识别包括颜色检测、跟踪、运动、物体识别、音响和目标检测。

图像目标检测(Image Object Detection)

Instance Localization for Self-supervised Detection Pretraining

Multiple Instance Active Learning for Object Detection(用于对象检测的多实例主动学习)

Open-world object detection(开放世界中的目标检测)

Positive-Unlabeled Data Purification in the Wild for Object Detection(野外检测对象的阳性无标签数据提纯)

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers


Image-to-image Translation via Hierarchical Style Disentanglement Xinyang Li, Shengchuan Zhang, Jie Hu, Liujuan Cao, Xiaopeng Hong, Xudong Mao, Feiyue Huang, Yongjian Wu, Rongrong Ji ​​https://arxiv.org/abs/2103.01456​​​ ​​https://github.com/imlixinyang/HiSD​

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation ​​https://arxiv.org/pdf/2012.08512.pdf​​​ ​​https://tarun005.github.io/FLAVR/Code​​​ ​​https://tarun005.github.io/FLAVR/​

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford, Tobias Fischer ​​https://arxiv.org/abs/2103.01486​

Depth from Camera Motion and Object Detection Brent A. Griffin, Jason J. Corso ​​https://arxiv.org/abs/2103.01468​

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers ​​https://arxiv.org/pdf/2011.09094.pdf​

Multi-Stage Progressive Image Restoration ​​https://arxiv.org/abs/2102.02808​​​ ​​https://github.com/swz30/MPRNet​

Weakly Supervised Learning of Rigid 3D Scene Flow ​​https://arxiv.org/pdf/2102.08945.pdf​​​ ​​https://arxiv.org/pdf/2102.08945.pdf​​​ ​​https://3dsceneflow.github.io/​

Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning Mamshad Nayeem Rizve, Salman Khan, Fahad Shahbaz Khan, Mubarak Shah ​​https://arxiv.org/abs/2103.01315​

Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels ​​https://arxiv.org/abs/2101.05022​​​ ​​https://github.com/naver-ai/relabel_imagenet​

Rethinking Channel Dimensions for Efficient Model Design ​​https://arxiv.org/abs/2007.00992​​​ ​​https://github.com/clovaai/rexnet​

Coarse-Fine Networks for Temporal Activity Detection in Videos Kumara Kahatapitiya, Michael S. Ryoo ​​https://arxiv.org/abs/2103.01302​

A Deep Emulator for Secondary Motion of 3D Characters Mianlun Zheng, Yi Zhou, Duygu Ceylan, Jernej Barbic ​​https://arxiv.org/abs/2103.01261​

Fair Attribute Classification through Latent Space De-biasing ​​https://arxiv.org/abs/2012.01469​​​ ​​https://github.com/princetonvisualai/gan-debiasing​​​ ​​https://princetonvisualai.github.io/gan-debiasing/​

Auto-Exposure Fusion for Single-Image Shadow Removal Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Wei Feng, Yang Liu, Song Wang ​​https://arxiv.org/abs/2103.01255​

Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling ​​https://arxiv.org/pdf/2102.06183.pdf​​​ ​​https://github.com/jayleicn/ClipBERT​

MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing Zhengjue Wang, Hao Zhang, Ziheng Cheng, Bo Chen, Xin Yuan ​​https://arxiv.org/abs/2103.01786​


GAN/生成式/对抗式(GAN/Generative/Adversarial)


Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing(利用GAN中潜在的空间维度进行实时图像编辑)

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs(Hijack-GAN:意外使用经过预训练的黑匣子GAN)

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation(样式编码:用于图像到图像翻译的StyleGAN编码器)

A 3D GAN for Improved Large-pose Facial Recognition(用于改善大姿势面部识别的3D GAN)


AttentiveNAS: Improving Neural Architecture Search via Attentive ​​https://arxiv.org/pdf/2011.09011.pdf​

Diffusion Probabilistic Models for 3D Point Cloud Generation Shitong Luo, Wei Hu ​​https://arxiv.org/abs/2103.01458​

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge Francisco Rivera Valverde, Juana Valeria Hurtado, Abhinav Valada ​​https://arxiv.org/abs/2103.01353​​​ ​​http://rl.uni-freiburg.de/research/multimodal-distill​

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation ​​https://arxiv.org/abs/2008.00951​​​ ​​https://github.com/eladrich/pixel2style2pixel​​​ ​​https://eladrich.github.io/pixel2style2pixel/​

Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational Graph Xin Ye, Yezhou Yang ​​https://arxiv.org/abs/2103.01350​

RepVGG: Making VGG-style ConvNets Great Again ​​https://arxiv.org/abs/2101.03697​​​ ​​https://github.com/megvii-model/RepVGG​

Transformer Interpretability Beyond Attention Visualization ​​https://arxiv.org/pdf/2012.09838.pdf​​​ ​​https://github.com/hila-chefer/Transformer-Explainability​

PREDATOR: Registration of 3D Point Clouds with Low Overlap ​​https://arxiv.org/pdf/2011.13005.pdf​​​ ​​https://github.com/ShengyuH/OverlapPredator​​​ ​​https://overlappredator.github.io/​

© THE END


计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

CVPR2021 最新出炉的最佳paper,陆续更新中...(附论文地址)_计算机视觉_05


标签:...,github,abs,arxiv,paper,https,pdf,org,CVPR2021
From: https://blog.51cto.com/u_15726357/5768018

相关文章