1 红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。
2 红黑树的性质
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点 个数的两倍?
3 红黑树节点的定义
enum Color
{
RED,
BLACK,
};
template <class K,class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;// 节点的左孩子
RBTreeNode<K, V>* _right; // 节点的右孩子
RBTreeNode<K, V>* _parent;// 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
pair<K, V> _kv;// 节点的值域
Color _col; // 节点的颜色
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED)
{
}
};
4 红黑树结构
为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了 与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft 域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:
5 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点
template<class ValueType>
class RBTree
{
//……
bool Insert(const ValueType& data)
{
PNode& pRoot = GetRoot();
if (nullptr == pRoot)
{
pRoot = new Node(data, BLACK);
// 根的双亲为头节点
pRoot->_pParent = _pHead;
_pHead->_pParent = pRoot;
}
else
{
// 1. 按照二叉搜索的树方式插入新节点
// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
//若满足直接退出,否则对红黑树进行旋转着色处理
}
// 根节点的颜色可能被修改,将其改回黑色
pRoot->_color = BLACK;
_pHead->_pLeft = LeftMost();
_pHead->_pRight = RightMost();
return true;
}
private:
PNode& GetRoot(){ return _pHead->_pParent;}
// 获取红黑树中最小节点,即最左侧节点
PNode LeftMost();
// 获取红黑树中最大节点,即最右侧节点
PNode RightMost();
private:
PNode _pHead;
};
2. 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论: 约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一: cur为红,p为红,g为黑,u存在且为红
cur和p均为红,违反了性质三,此处能否将p直接改为黑?
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红
情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑
针对每种情况进行相应的处理即可。
bool Insert(const ValueType& data)
{
// ...
// 新节点插入后,如果其双亲节点的颜色为空色,则违反性质3:不能有连在一起的红色结点
while(pParent && RED == pParent->_color)
{
// 注意:grandFather一定存在
// 因为pParent存在,且不是黑色节点,则pParent一定不是根,则其一定有双亲
PNode grandFather = pParent->_pParent;
// 先讨论左侧情况
if(pParent == grandFather->_pLeft)
{
PNode unclue = grandFather->_pRight;
// 情况三:叔叔节点存在,且为红
if(unclue && RED == unclue->_color)
{
pParent->_color = BLACK;
unclue->_color = BLACK;
grandFather->_color = RED;
pCur = grandFather;
pParent = pCur->_pParent;
}
else
{
// 情况五:叔叔节点不存在,或者叔叔节点存在且为黑
if(pCur == pParent->_pRight)
{
_RotateLeft(pParent);
swap(pParent, pCur);
}
}
// 情况五最后转化成情况四
grandFather->_color = RED;
pParent->_color = BLACK;
_RotateRight(grandFather);
}
else
{
}
}
// ...
}
我的代码
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (parent->_kv.first > kv.first)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
cur->_col = RED;
while (parent && parent->_col == BLACK)
{
Node* grandfather = parent->_parent;
if (grandfather == nullptr)
break;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
if(uncle && uncle->_col==RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上处理
cur = parent;
parent = cur->_parent;
}
else
{
//双旋
if (cur == parent->_right)
{
RotateL(parent);
swap(cur, parent);
}
RotateR(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上处理
cur = parent;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(parent);
swap(parent, cur);
}
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
break;
}
}
}
_root->_col = BLACK;
return true;
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_left = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* pparent = parent->_parent;
subR = parent->_parent;
if (parent == _root)
{
subR = _root;
subR->_parent = nullptr;
}
else
{
if (pparent->_left == parent)
pparent->_left = subR;
else
pparent->_right = subR;
subR->_parent = pparent;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
parent = subLR->_parent;
subL->_right = parent;
Node* pparent = parent->_parent;
subL = parent->_parent;
if (parent == _root)
{
subL = _root;
subL->_parent = nullptr;
}
else
{
if (pparent->_left == parent)
pparent->_left = subL;
else
pparent->_right = subL;
subL->_parent = pparent;
}
}
6 红黑树的验证
红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质
bool IsValidRBTree()
{
Node* pRoot = _root;
// 空树也是红黑树
if (nullptr == pRoot)
return true;
// 检测根节点是否满足情况
if (BLACK != pRoot->_col)
{
cout << "违反红黑树性质二:根节点必须为黑色" << endl;
return false;
}
// 获取任意一条路径中黑色节点的个数
size_t blackCount = 0;
Node* pCur = pRoot;
while (pCur)
{
if (BLACK == pCur->_col)
blackCount++;
pCur = pCur->_left;
}
// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
size_t k = 0;
return _IsValidRBTree(pRoot, k, blackCount);
}
bool _IsValidRBTree(Node* pRoot, size_t k, const size_t blackCount)
{
//走到null之后,判断k和black是否相等
if (nullptr == pRoot)
{
if (k != blackCount)
{
cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
return false;
}
return true;
}
// 统计黑色节点的个数
if (BLACK == pRoot->_col)
k++;
// 检测当前节点与其双亲是否都为红色
Node* pParent = pRoot->_parent;
if (pParent && RED == pParent->_col && RED == pRoot->_col)
{
cout << "违反性质三:没有连在一起的红色节点" << endl;
return false;
}
return _IsValidRBTree(pRoot->_left, k, blackCount) &&
_IsValidRBTree(pRoot->_right, k, blackCount);
}
7 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。
标签:cur,parent,pParent,节点,详解,红黑树,col From: https://blog.csdn.net/weixin_66400112/article/details/139427057