Time Limit: 1000MS | | Memory Limit: 65535KB | | 64bit IO Format: %lld & %llu |
Description
Given
N unsigned
64-bit
integers, you can bitwise NOT
each or not. Then you need to add operations selected from bitwise XOR
, bitwise OR
and bitwise AND
, between any two successive integers and calculate the result. Your job is to
make the result as small as possible.
Input
The first line of the input is
T (no more than
1000), which stands for the number of test cases you need to solve.Then
T blocks follow. The first line of each block contains a single number
N (
1≤N≤100) indicating the number of unsigned
64-bit integers. Then
n
Output
For every test case, you should output Case #k:
first, where
k indicates the case number and counts from
1. Then output the answer.
Sample Input
2
3
1 2 3
2
3 6
Sample Output
Case #1: 0
Case #2: 1
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
using namespace std;
typedef unsigned long long int LL;
int n;
LL ans;
LL MAX;
LL a[105];
LL min(LL a,LL b){return (a<b?a:b);}
void dfs(LL num,int cnt)
{
if(ans==0)
return;
if(num==0)
{
ans=0;
return;
}
if(cnt==n+1)
{
ans=min(ans,num);
return;
}
dfs(num|(~a[cnt]),cnt+1);
dfs(num&(~a[cnt]),cnt+1);
dfs(num^(~a[cnt]),cnt+1);
dfs(num|a[cnt],cnt+1);
dfs(num&a[cnt],cnt+1);
dfs(num^a[cnt],cnt+1);
}
int main()
{
int t;
scanf("%d",&t);
int cas=0;
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%llu",&a[i]);
MAX=1;
MAX<<=63;
ans=MAX;
dfs(a[1],2);
dfs(~a[1],2);
printf("Case #%d: %llu\n",++cas,ans);
}
return 0;
}