引言
前面介绍了使用RAG-GPT和OpenAI快速搭建LangChain官网智能客服。有些场景,用户可能无法通过往外网访问OpenAI等云端LLM服务,或者由于数据隐私等安全问题,需要本地部署大模型。本文将介绍通过RAG-GPT和Ollama搭建智能客服。
RAG技术原理介绍
在介绍RAG-GPT项目之前,我们首先要理解RAG的基本原理,RAG在问答系统中的一个典型应用主要包括三个模块,分别是:
- Indexing(索引):将文档分割成chunk,编码成向量,并存储在向量数据库中。
- Retrieval(检索):根据用户输入query和向量数据库中chunks语义相似度检索与问题最相关的前k个chunk,形成本次问答的上下文。
- Generation(生成):将原始问题和检索到的chunks整合形成合适的prompt一起输入到LLM中,让LLM输出与上下文有关的回答。
智能文档的在线检索流程可以用一张图说明,上图中展示了一个完整的问答流程:
- 用户发起query
- 结合Bot实际应用场景,评估是否对query进行rewrite
- Retieval模块根据query检索出Indexing中的相关的文档
- 将召回的文档进行Reranking
- 并且根据relevance score进行过滤,过滤掉低质的文档
- 形成合适的Prompt后输入到LLM大模型中,最后生成答案
以上是对RAG技术的基本介绍,如果想深入了解技术细节可以参考这篇文章:RAG技术全解析:打造下一代智能问答系统。
如何快速实现RAG的智能问答系统?
从RAG的原理介绍中可以看到要实现RAG整套架构还是存在一定工作量,需要构建索引、检索、集成LLM、Prompt优化等一系列模块,具有一定的难度。
基于此,RAG-GPT提供了一整套开源解决方案,旨在利用LLM和RAG技术快速搭建一个全功能的客服解决方案。该项目基于Flask框架,包括前端用户界面、后端服务和管理员控制台,为企业利用LLM搭建智能客服等对话场景提供了一个完整的自动化解决方案,可以帮助开发者快速搭建一个智能问答系统,且代码完全开源。
项目地址:https://github.com/open-kf/rag-gpt
RAG-GPT的基本架构
RAG-GPT关键特性:
- 内置LLM支持:支持云端LLM和本地LLM。
- 快速设置:只需五分钟即可部署生产级对话服务机器人。
- 多样化知识库集成:支持多种类型的知识库,包括网站、独立URL和本地文件。
- 灵活配置:提供用户友好的后台,配备可定制的设置以简化管理。
- 美观的用户界面:具有可定制且视觉上吸引人的用户界面。
从特性可以知道,RAG相比一些商业收费的基于知识库的问答系统优势在于:
- 易用、快速搭建。
- 能自主管理知识库,避免商业秘密和知识产权泄漏。
- 可以自主选择LLM模型和甚至扩展部署本地模型。
RAG-GPT 快速搭建智能问答系统
RAG-GPT的基本组成分为三部分:
- 智能问答后端服务
- 管理后台系统
- 用户使用的ChatBot UI。
下面,将介绍如何启动RAG-GPT项目和使用这三个模块,将RAG-GPT集成到你的网站只需要5个步骤:
1. 下载源代码,通过Git克隆RAG-GPT的GitHub仓库:
git clone https://github.com/open-kf/rag-gpt.git && cd rag-gpt
2.配置环境变量
[!NOTE]
我们首先需要下载&安装Ollama。
然后下载
Embedding模型
和LLM底座模型
。
Ollama启动默认绑定的IP:PORT
是127.0.0.1:11434
,可以参考这篇文档修改默认配置。
Embedding模型我们选择mxbai-embed-large
LLM底座模型我们选择llama3
通过 ollama list 命令,可以看到下载的模型列表信息。
在启动RAG-GPT服务之前,需要修改相关配置,以便程序正确初始化。
cp env_of_ollama .env
.env 文件中的变量
LLM_NAME="Ollama"
OLLAMA_MODEL_NAME="xxxx"
OLLAMA_BASE_URL="http://127.0.0.1:11434"
MIN_RELEVANCE_SCORE=0.3
BOT_TOPIC="OpenIM"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=0
USE_RERANKING=1
USE_DEBUG=0
对 .env 中的变量做以下调整:
- 不要修改 LLM_NAME。
- 更新 OLLAMA_MODEL_NAME 设置,这里我们使用
llama3
,请求和响应的API接口,可以和OpenAI兼容。 - 更新 OLLAMA_BASE_URL 设置,我们修改为
http://192.168.2.36:11434
。注意,这里只需要配置IP:PORT
,尾部不要加上/
或者其它URI
。 - 将 BOT_TOPIC 更改为你的机器人的名称。这非常重要,因为它将在
构造Prompt
中使用。我在这里要搭建关于OpenSSL Cookbook的智能客服,所以改写为OpenSSL
。 - 调整 URL_PREFIX 以匹配你的网站的域名。
- 有关常量的含义和用法的更多信息,可以查看 server/constant 目录下的文件。
3.执行启动命令
分别执行以下命令,即可启动。
[!NOTE]
请使用 Python 3.10.x 或以上版本。
先安装python依赖项
python3 -m venv myenv
source myenv/bin/activate
pip install -r requirements.txt
启动项目即可:
python create_sqlite_db.py
python rag_gpt_app.py
或者执行
sh start.sh
4.快速体验聊天效果
- 启动服务后先打开管理后台。
首先要登录到管理后台,浏览器输入:http://192.168.2.36:7000/open-kf-admin/
登录账号为:admin
密码 :open_kf_AIGC@2024
.
- 导入知识库,这里上传
openssl-cookbook.pdf
。
在管理后台切换到 Source
tab,从本地磁盘上传openssl-cookbook.pdf
,
然后点击 Upload
即可一键上传本地文档作为知识库。
上传本地文档到服务端后,初始状态是 Recorded
。 服务端会通过一个异步任务解析上传的文档,并且计算Embedding,然后存入向量数据库。
服务端处理完后,可以看到上传文档的日志。
在admin页面,在管理后台上,上传文档展示的状态都是 Trained
。
浏览器打开http://192.168.2.36:7000/open-kf-chatbot/
,就可以访问Bot了。
5.一键嵌入到网站
RAG-GPT提供了将聊天机器人嵌入到网站的方法,使得用户可以直接在网站上使用智能问答服务。
打开管理后台菜单切换到embed,复制两个代码即可实现一键嵌入,这两个代码片效果分别如下:一个是iframe嵌入一个聊天窗口,一个是在页面右下角点击弹出聊天窗口。
可以新建一个文本文件,将代码复制进去,用浏览器打开就可以看到嵌入效果了。
6.管理后台其他功能
- 管理员可以通过仪表板查看用户的历史请求记录,以便进行分析和优化。
可以按照时间、用户查询聊天记录和修改问答对的答案以更符合自身需求。
- 配置聊天对话的UI
用户可以定制化聊天对话框的风格,使其更符合自身网站的风格特性。
结语
RAG-GPT项目具备开源免费、易于部署集成、开箱即用和功能丰富的特点,为LLM大模型在特定领域的应用落地提供了一套企业级的解决方案。RAG-GPT已经支持本地文件知识库,集成国内LLM大模型等特性,使得RAG-GPT满足更多样化的需求。
关于我们
OpenIM是领先的开源即时通讯(IM)平台,目前在GitHub上的星标已超过13k。随着数据和隐私安全的重视以及信息技术的快速发展,政府和企业对于私有部署的IM需求急剧增长。OpenIM凭借“安全可控”的特点,在协同办公软件市场中占据了一席之地。在后AIGC时代,IM作为人机交互的首要接口,其价值愈发重要,OpenIM期待在此时代扮演更关键的角色。
基于这样的视角,我们最近开源了RAG-GPT项目,已被部分企业采用并持续完善中。
如果您对RAG-GPT感兴趣,可以访问以下链接了解更多信息:
项目地址: https://github.com/open-kf/rag-gpt
在线Demo: https://demo.rentsoft.cn/
我们的目标是改进文件管理功能,更有效地管理数据,并整合企业级知识库。欢迎大家在GitHub上Star并关注,支持我们的开源旅程。
开源说明:RAG-GPT采用Apache 2.0许可,支持免费使用和二次开发。遇到问题时,请在GitHub提Issue或加入我们的OpenKF开源社区群讨论。如果您需要更智能的客服系统,请与我们联系。
标签:RAG,Ollama,智能,文档,LLM,GPT,问答 From: https://blog.csdn.net/zhuyingxiao/article/details/139129601