首页 > 其他分享 >Flink Batch Hash Aggregate

Flink Batch Hash Aggregate

时间:2024-05-12 14:52:23浏览次数:30  
标签:Hash buffer aggregate Flink aggregation lookupInfo key Aggregate input

数据类型要求

BatchPhysicalHashAggRule match 条件会判断 isAggBufferFixedLength(agg)

为什么要求 aggCall 的类型是 Fixed Length 的才可以使用 HashAggregate ?

因为在 HashAggregate 中, 依赖于 BytesHashMap 数据结构来存储 keyValue 数据. 而 ByteHashMap 不支持变长的 value

Pasted image 20240510100856

ByteHashMap 结构

实现参考自 Spark BytesToBytesMap , 以二进制结构存储实现的 hashMap. 其目的就是绕过 JVM 的 GC, 直接将数据序列化之后存储到基于堆外的 MemorySegment 上.

数据分为两个部分 Bucket Area 和 Record Area. 分别存储 key 和对应的 record.

public BinaryRowData append(LookupInfo<K, BinaryRowData> lookupInfo, BinaryRowData value)
		throws IOException {
	try {
		if (numElements >= growthThreshold) {
			growAndRehash();
			// update info's bucketSegmentIndex and bucketOffset
			lookup(lookupInfo.key);
		}
		BinaryRowData toAppend = hashSetMode ? reusedValue : value;
		int pointerToAppended = recordArea.appendRecord(lookupInfo, toAppend);
		bucketSegments
				.get(lookupInfo.bucketSegmentIndex)
				.putInt(lookupInfo.bucketOffset, pointerToAppended);
		bucketSegments
				.get(lookupInfo.bucketSegmentIndex)
				.putInt(lookupInfo.bucketOffset + ELEMENT_POINT_LENGTH, lookupInfo.keyHashCode);
		numElements++;
		recordArea.setReadPosition(pointerToAppended);
		((RecordArea) recordArea).skipKey();
		return recordArea.readValue(reusedValue);
	} catch (EOFException e) {
		numSpillFiles++;
		spillInBytes += recordArea.getSegmentsSize();
		throw e;
	}
public int appendRecord(LookupInfo<K, BinaryRowData> lookupInfo, BinaryRowData value)
		throws IOException {
	final long oldLastPosition = outView.getCurrentOffset();
	// serialize the key into the BytesHashMap record area
	int skip = keySerializer.serializeToPages(lookupInfo.getKey(), outView);
	long offset = oldLastPosition + skip;

	// serialize the value into the BytesHashMap record area
	valueSerializer.serializeToPages(value, outView);
	if (offset > Integer.MAX_VALUE) {
		LOG.warn(
				"We can't handle key area with more than Integer.MAX_VALUE bytes,"
						+ " because the pointer is a integer.");
		throw new EOFException();
	}
	return (int) offset;
}

BytesHashMap 本身没有实现更新的功能, 但是 lookup 得到的结果 LookupInfo 中包含了 kv pair, value 作为 BinaryRow 是可以直接更新的.

public static final class LookupInfo<K, V> {
	boolean found;
	K key;
	V value;

	/**
	 * The hashcode of the look up key passed to {@link BytesMap#lookup(K)}, Caching this
	 * hashcode here allows us to avoid re-hashing the key when inserting a value for that key.
	 * The same purpose with bucketSegmentIndex, bucketOffset.
	 */
	int keyHashCode;

	int bucketSegmentIndex;
	int bucketOffset;
	}

例如 Hash Aggregate 的过程代码如下

val processCode =
  s"""
	 | // input field access for group key projection and aggregate buffer update
	 |${ctx.reuseInputUnboxingCode(inputTerm)}
	 | // project key from input
	 |$keyProjectionCode
	 | // look up output buffer using current group key
	 |$lookupInfo = ($lookupInfoTypeTerm) $aggregateMapTerm.lookup($currentKeyTerm);
	 |$currentAggBufferTerm = ($binaryRowTypeTerm) $lookupInfo.getValue();
	 |
	 |if (!$lookupInfo.isFound()) {
	 |  $lazyInitAggBufferCode
	 |  // append empty agg buffer into aggregate map for current group key
	 |  try {
	 |    $currentAggBufferTerm =
	 |      $aggregateMapTerm.append($lookupInfo, ${initedAggBuffer.resultTerm});
	 |  } catch (java.io.EOFException exp) {
	 |    $dealWithAggHashMapOOM
	 |  }
	 |}
	 | // aggregate buffer fields access
	 |${ctx.reuseInputUnboxingCode(currentAggBufferTerm)}
	 | // do aggregate and update agg buffer
	 |${aggregate.code}
	 |""".stripMargin.trim

当 lookup info 找到时, 就执行 aggregate.code, 以 sum 生成的 codegen 为例, 从 lookup info 中获取 Agg buffer, 计算完就直接回写 BinaryRow 了

 // look up output buffer using current group key
lookupInfo$10 = (org.apache.flink.table.runtime.util.collections.binary.BytesMap.LookupInfo) aggregateMap$9.lookup(currentKey$4);
currentAggBuffer$14 = (org.apache.flink.table.data.binary.BinaryRowData) lookupInfo$10.getValue();

// 累加
isNull$19 = isNull$18 || isNull$17;
result$20 = -1L;
if (!isNull$19) {
result$20 = (long) (field$18 + field$17);
}

// 更新
if (isNull$22) {
  currentAggBuffer$14.setNullAt(0);
} else {
  currentAggBuffer$14.setLong(0, result$22);
}

如果 BinaryRow 中的部分字段为变长, 是没法直接原地更新的, 这就为什么 Hash Aggregate 要求 agg buffer 为定长.

解决这个问题的, 最简单的思路就是, BytesHashMap 是为了去除 JVM 管理, 那为了简化对于非定长的, 还是 Fallback 到 JVM 的对象, Spark ObjectHashAggregate 就是这种思路.
但是这种情况下的问题是堆内存你不知道什么时候触发 spill. 基于非堆时, 已使用大小都是已知的, 而堆上就不确定了, 比较容易触发 oom 或者 GC 问题, Spark 中 flush 就按照保守估计的 key 超过一定数量就 spill.

但总的来说, 性能应该优于 SortAggregate 的

Spark:

Spark SQL 查询引擎– HashAggregateExec & ObjectHashAggregateExec

[SPARK-17949][SQL] A JVM object based aggregate operator

DeclarativeAggregateFunction & ImperativeAggregateFunction

另一个限制是 HashAggregate 中强要求了 Agg 函数需要时 DeclarativeAggregateFunction 类型的. 聚合函数的实现有两类

  • DeclarativeAggregateFunction 声明式, 基于 Expression Api 描述
  • ImperativeAggregateFunction 命令式, 一般面向用户 api (UDAF 继承)
    • image.png
public Expression[] accumulateExpressions() {
	return new Expression[] {
		/* sum = */ ifThenElse(
				isNull(operand(0)),
				sum,
				ifThenElse(
						isNull(operand(0)),
						sum,
						ifThenElse(isNull(sum), operand(0), adjustedPlus(sum, operand(0)))))
	};
}
public void accumulate(Row accumulator, String s) {  
	 final String max = (String) accumulator.getField(0);  
	 if (max == null || s.compareTo(max) > 0) {  
	 accumulator.setField(0, s);  
	 }  
}

从直观来看, ImperativeAggregateFunction 的 accumulate 方法没有返回值, 所以 ACC 一定是个复杂类型, 否则累计值无法更新. 因此 ImperativeAggregateFunction 的 agg 类型一定不是 Fixed type.

DeclarativeAggregateFunction 的 accumulate 函数是一个表达式, 表达式是有返回值的. 比如 ifThenElse 最终返回的就是其中一个值. 因此可以直接为 Long 类型.

这一点上我觉得 ImperativeAggregateFunction 应该也是可以改造成这种形式的, 这样对于用户的 UDAF 来说是更友好的, 可以避免额外的包装, 硬生生变成一个非 Fixed Length 的类型.

所以在 HashAggregate Codegen 目前只支持 DeclarativeAggregateFunction 声明的聚合函数. Codegen 中代码依赖. 由于上面 ImperativeAggregateFunction 的类型一定推导不出 Fixed type, 所以 ImperativeAggregateFunction 不会走到HashAggregate

Pasted image 20240510105855

Spark

Spark 来看 Agg 函数的接口会更清楚一些, spark 中有五类接口(也许更多)

  • 用户API
    • UserDefinedAggregateFunction 会封装成 -> ImperativeAggregate. 但每次传输给用户时, 都会进行序列化和反序列化
    • Aggregator : org.apache.spark.sql.functions#udaf -> 创建出 ScalaAggregator 继承自 TypedImperativeAggregate 用户可以定义任意类型的 Agg Buf.
    • 两个类型的比较
  • 内部API
    • DeclarativeAggregate: for aggregation functions that are specified using Catalyst expressions. 生命式
    • ImperativeAggregate: for aggregation functions that are specified in terms of initialize(), update(), and merge() functions that operate on Row-based aggregation buffers. 命令式 InternalRow 作为内部类型
    • TypedImperativeAggregate 任意类型作为 ACC 命令式

从这个定义来看, 并没有说 ImperativeAggregate 适用于 Variable Length 的类型.

abstract class ImperativeAggregate extends AggregateFunction with CodegenFallback {

/**  
* Initializes the mutable aggregation buffer located in `mutableAggBuffer`.  
*  
* Use `fieldNumber + mutableAggBufferOffset` to access fields of `mutableAggBuffer`.  
*/  
def initialize(mutableAggBuffer: InternalRow): Unit  
  
/**  
* Updates its aggregation buffer, located in `mutableAggBuffer`, based on the given `inputRow`.  
*  
* Use `fieldNumber + mutableAggBufferOffset` to access fields of `mutableAggBuffer`.  
*  
* Note that, the input row may be produced by unsafe projection and it may not be safe to cache  
* some fields of the input row, as the values can be changed unexpectedly.  
*/  
def update(mutableAggBuffer: InternalRow, inputRow: InternalRow): Unit  
  
/**  
* Combines new intermediate results from the `inputAggBuffer` with the existing intermediate  
* results in the `mutableAggBuffer.`  
*  
* Use `fieldNumber + mutableAggBufferOffset` to access fields of `mutableAggBuffer`.  
* Use `fieldNumber + inputAggBufferOffset` to access fields of `inputAggBuffer`.  
*  
* Note that, the input row may be produced by unsafe projection and it may not be safe to cache  
* some fields of the input row, as the values can be changed unexpectedly.  
*/  
def merge(mutableAggBuffer: InternalRow, inputAggBuffer: InternalRow): Unit  
}

}

TypedImperativeAggregate, 他的接口定义就是泛型, 因此可以定义任意类型作为 ACC type. 这类接口就是上面所支持的 ObjectHashAggregate 的类型

  /**
   * Updates the aggregation buffer object with an input row and returns a new buffer object. For
   * performance, the function may do in-place update and return it instead of constructing new
   * buffer object.
   *
   * This is typically called when doing Partial or Complete mode aggregation.
   *
   * @param buffer The aggregation buffer object.
   * @param input an input row
   */
  def update(buffer: T, input: InternalRow): T

  /**
   * Merges an input aggregation object into aggregation buffer object and returns a new buffer
   * object. For performance, the function may do in-place merge and return it instead of
   * constructing new buffer object.
   *
   * This is typically called when doing PartialMerge or Final mode aggregation.
   *
   * @param buffer the aggregation buffer object used to store the aggregation result.
   * @param input an input aggregation object. Input aggregation object can be produced by
   *              de-serializing the partial aggregate's output from Mapper side.
   */
  def merge(buffer: T, input: T): T

HashAggregate 算子

ProcessCode

val processCode =
  s"""
	 | // input field access for group key projection and aggregate buffer update
	 |${ctx.reuseInputUnboxingCode(inputTerm)}
	 | // project key from input
	 |$keyProjectionCode
	 | // look up output buffer using current group key
	 |$lookupInfo = ($lookupInfoTypeTerm) $aggregateMapTerm.lookup($currentKeyTerm);
	 |$currentAggBufferTerm = ($binaryRowTypeTerm) $lookupInfo.getValue();
	 |
	 |if (!$lookupInfo.isFound()) {
	 |  $lazyInitAggBufferCode
	 |  // append empty agg buffer into aggregate map for current group key
	 |  try {
	 |    $currentAggBufferTerm =
	 |      $aggregateMapTerm.append($lookupInfo, ${initedAggBuffer.resultTerm});
	 |  } catch (java.io.EOFException exp) {
	 |    $dealWithAggHashMapOOM
	 |  }
	 |}
	 | // aggregate buffer fields access
	 |${ctx.reuseInputUnboxingCode(currentAggBufferTerm)}
	 | // do aggregate and update agg buffer
	 |${aggregate.code}
	 |""".stripMargin.trim

Append 写入数据时, 当内存不足时(申请 segment 申请不到), 会触发 EOFException. 在 processCode 的逻辑中就会执行 dealWithAggHashOOM 的逻辑. 这里会分两种

image.png|625

  • Local: 对于 local 阶段如果出现 OOM 那么就将当前 BytesHashMap 中保存的数据下发即 outputResultFromMap. 下发完成后清空 Map 再尝试插入一次 retryAppend
        s"""
         |$logMapOutput
         | // hash map out of memory, output directly
         |$outputResultFromMap
         | // retry append
         |$retryAppend
        """.stripMargin
    
  • Global: 当出现内存不足时, 触发 sort and spill, 将内存数据先排序, 再写入本地
      val dealWithAggHashMapOOM =
      s"""
         |$logMapSpilling
         | // hash map out of memory, spill to external sorter
         |if ($sorterTerm == null) {
         |  $createSorter
         |}
         | // sort and spill
         |$sorterTerm.sortAndSpill(
         |  $aggregateMapTerm.getRecordAreaMemorySegments(),
         |  $aggregateMapTerm.getNumElements(),
         |  new $memPoolTypeTerm($aggregateMapTerm.getBucketAreaMemorySegments()));
         | // retry append
         |$retryAppend
     """.stripMargin
    

EndInput

val endInputCode = if (isFinal) {
  val memPoolTypeTerm = classOf[BytesHashMapSpillMemorySegmentPool].getName
  s"""
	 |if ($sorterTerm == null) {
	 | // no spilling, output by iterating aggregate map.
	 | $outputResultFromMap
	 |} else {
	 |  // spill last part of input' aggregation output buffer
	 |  $sorterTerm.sortAndSpill(
	 |    $aggregateMapTerm.getRecordAreaMemorySegments(),
	 |    $aggregateMapTerm.getNumElements(),
	 |    new $memPoolTypeTerm($aggregateMapTerm.getBucketAreaMemorySegments()));
	 |   // only release floating memory in advance.
	 |   $aggregateMapTerm.free(true);
	 |  // fall back to sort based aggregation
	 |  $fallbackToSortAggCode
	 |}
   """.stripMargin
} else {
  s"$outputResultFromMap"
}
  • Local 阶段: 将 Map 中剩余的数据遍历下发 outputResultFromMap
  • Global 阶段:
    • 没有发生过 Spill, 将 Map 中剩余的数据遍历下发 outputResultFromMap
    • 发生过 Spill. 先将最后一批内存的数据 sortAndSpill 写入本地, 再执行 fallbackToSortAgg 的逻辑, 即执行 SortAgg

标签:Hash,buffer,aggregate,Flink,aggregation,lookupInfo,key,Aggregate,input
From: https://www.cnblogs.com/Aitozi/p/18187830

相关文章

  • 10分钟了解Flink SQL使用
    Flink是一个流处理和批处理统一的大数据框架,专门为高吞吐量和低延迟而设计。开发者可以使用SQL进行流批统一处理,大大简化了数据处理的复杂性。本文将介绍FlinkSQL的基本原理、使用方法、流批统一,并通过几个例子进行实践。1、FlinkSQL基本原理FlinkSQL建立在ApacheFlink之上......
  • mysql使用group by查询报错SELECT list is not in GROUP BY clause and contains nona
    官方解释:ONLY_FULL_GROUP_BY是MySQL数据库提供的一个sql_mode,通过这个sql_mode来保证,SQL语句“分组求最值”合法性的检查.这种模式采用了与Oracle、DB2等数据库的处理方式。即不允许selecttargetlist中出现语义不明确的列.对于用到GROUPBY的select语句,查出......
  • Java-线程-并发问题和ConcurrentHashMap
    0.背景在经典八股文中,我们会背:啊,hashmap是线程不安全的,concurrentHashMap是线程安全的。然后呢,又背:啊,为啥ConcurrentHashMap是安全的,因为加锁了。好好好,接着八股:啊,啥啥分段锁。本文,结合实际例子来进行分析,这他妈的到底是在叭叭啥。一切,从一个Hashmap的demo谈起。pu......
  • hash思想与字符串
    哈希思想与字符串窥见前两天听了一个学长讲字符串,KMP,Tire,DFA,AC自动机,马拉车...叽里呱啦的我这个小蒟蒻也听不明白。虽然但是学长在最后清了清嗓子,敲了敲黑板,拿出了镇场子的家伙——hash算法。听完之后,满座惊呼,醍醐灌顶,恍然大悟。我也这般激动,便趁着这股劲写下这篇窥见,随便纪念这......
  • Hash
    对于一个主串和一个子串,我们想知道它们是否匹配,暴力肯定不可取,如果我们用一个数来表示它们中的每一个字符以及子串呢?字符串hash就出现了\(f(s)=s[1]*base^{len-1}+s[2]*base^{len-2}+…+s[len]*base^{0}\)很显然,字符串的hash值的计算是类比于十进制数的个十百位叠加,而不是单纯的......
  • 【java】【集合类】HashMap 与HashTable的区别
    1.继承的父类不同HashMap是继承自AbstractMap类,而HashTable是继承自Dictionary类。不过它们都实现了同时实现了map、Cloneable(可复制)、Serializable(可序列化)这三个接口HashMap继承、实现关系如下: HashTable继承、实现关系如下: Dictionary类是一个已经被废弃的类(见其源码......
  • 模块学习之hashlib模块
    【一】什么是摘要算法Python的hashlib提供了常见的摘要算法,如MD5、SHA1等等摘要算法又称哈希算法、散列算法它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest......
  • Flink架构与原理
    Flink集群运行剖析Flink运行时由两种类型的进程组成:一个 JobManager 和一个或者多个 TaskManager。Client:Client是提交作业的客户端,虽然不是运行时和作业执行时的一部分,但它负责准备和提交作业到JobManager,它可以运行在任何机器上,只要与JobManager环境连通即可。JobManager......
  • [20240426]sql_id 转换hash_value.txt
    [20240426]sql_id转换hash_value.txt--//以前写的脚本,转换sql_idtohash_value.遇到问题:$cats2p.sh#!/bin/bash#convertsql_idtohash_valueodebug=${ODEBUG:-0}sql_id="$*"v1=$(echo$sql_id|tr$(echo{0..9}{a..z}|tr-d'eilo')$(echo{0..9}{a.......
  • Hash
    Hash思想及原理\(\quadHash\)的思想与离散化有些许类似,都是把一个较大的域映射到一个较小的、方便比较的域中,以达到降低时间复杂度的目的。\(\quadHash\)的精髓在于\(Hash\)函数。它并不是一个确定的函数,而是要求各位\(Oier\)自己定义,(怎么定义?想怎么定义就怎么定义)。当处理数......