首页 > 其他分享 >语音信号处理中的“窗函数”

语音信号处理中的“窗函数”

时间:2024-05-06 15:45:51浏览次数:14  
标签:plt 函数 信号处理 len hanning window 语音 np hann

文章代码仓库:https://github.com/LXP-Never/window_fun

窗函数贯穿整个语音信号处理,语音信号是一个非平稳的时变信号,但“**短时间内可以认为语音信号是平稳时不变的,一般 10~30ms**。

对连续的语音分帧做STFT处理,等价于截取一段时间信号,对其进行周期性延拓,从而变成无限长序列,并对该无限长序列做FFT变换,这一截断并不符合傅里叶变换的定义。因此,会导致频谱泄漏和混叠

  • 频谱泄漏:如果不加窗,默认就是矩形窗,时域的乘积就是频域的卷积,使得频谱以实际频率值为中心, 以窗函数频谱波形的形状向两侧扩散,指某一频点能量扩散到相邻频点的现象,会导致幅度较小的频点淹没在幅度较大的频点泄漏分量中
  • 频谱混叠:会在分段拼接处引入虚假的峰值,进而不能获得准确的频谱情况

加窗的目的让一帧信号的幅度在两端渐变到 0,渐变对傅里叶变换有好处,可以让频谱上的各个峰更细,不容易糊在一起,从而减轻频谱泄漏和混叠的影响

加窗的代价一帧信号两端的部分被削弱了,没有像中央的部分那样得到重视。弥补的办法就是相互重叠。相邻两帧的起始位置的时间差叫做帧移,常见的取法是取为帧长的一半

对于语音,窗函数常选汉宁窗(Hanning)、汉明窗(Hamming)、sqrthann及其改进窗,他们的时域波形和幅频响应如下所示:

1、汉宁窗(Hann)

$$w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1$$

2、汉明窗(Hamming)

$$w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1$$

# -*- coding:utf-8 -*-
# Author:凌逆战 | Never
# Date: 2023/1/1
"""
绘制 窗函数和对应的频率响应
"""
import numpy as np
from numpy.fft import rfft
import matplotlib.pyplot as plt

window_len = 60


# frequency response
def frequency_response(window, window_len=window_len, NFFT=2048):
    A = rfft(window, NFFT) / (window_len / 2)  # (513,)
    mag = np.abs(A)
    freq = np.linspace(0, 0.5, len(A))
    # 忽略警告
    with np.errstate(divide='ignore', invalid='ignore'):
        response = 20 * np.log10(mag)
    response = np.clip(response, -150, 150)
    return freq, response


def Rectangle_windows(win_length):
    # 矩形窗
    return np.ones((win_length))


def Voibis_windows(win_length):
    """ Voibis_windows窗函数,RNNoise使用的是它,它满足Princen-Bradley准则。
    :param x:
    :param win_length: 窗长
    :return:
    """
    x = np.arange(0, win_length)
    return np.sin((np.pi / 2) * np.sin((np.pi * x) / win_length) ** 2)


def sqrt_hanning_windows(win_length, mode="periodic"):
    # symmetric: 对称窗,主要用于滤波器的设计
    # periodic: 周期窗,常用于频谱分析
    if mode == "symmetric":
        haning_window = np.hanning(win_length)
        sqrt_haning_window = np.sqrt(haning_window)
    elif mode == "periodic":
        haning_window = np.hanning(win_length+1)
        sqrt_haning_window = np.sqrt(haning_window)
        sqrt_haning_window = sqrt_haning_window[0:-1].astype('float32')
    return sqrt_haning_window


Rectangle_windows = Rectangle_windows(window_len)
hanning_window = np.hanning(M=window_len)
print(np.argmax(hanning_window))
sqrt_hanning_windows = sqrt_hanning_windows(window_len)
hamming_window = np.hamming(M=window_len)
Voibis_windows = Voibis_windows(window_len)
blackman_window = np.blackman(M=window_len)
bartlett_window = np.bartlett(M=window_len)
kaiser_window = np.kaiser(M=window_len, beta=14)

plt.figure()
plt.plot(Rectangle_windows, label="Rectangle")
plt.plot(hanning_window, label="hanning")
plt.plot(sqrt_hanning_windows, label="sqrt_hanning")
plt.plot(hamming_window, label="hamming")
plt.plot(Voibis_windows, label="Voibis")
plt.plot(blackman_window, label="blackman")
plt.plot(bartlett_window, label="bartlett")
plt.plot(kaiser_window, label="kaiser")

plt.legend()
plt.tight_layout()
plt.show()

freq, Rectangle_FreqResp = frequency_response(Rectangle_windows, window_len)
freq, hanning_FreqResp = frequency_response(hanning_window, window_len)
freq, sqrt_hanning_FreqResp = frequency_response(sqrt_hanning_windows, window_len)
freq, hamming_FreqResp = frequency_response(hamming_window, window_len)
freq, Voibis_FreqResp = frequency_response(Voibis_windows, window_len)
freq, blackman_FreqResp = frequency_response(blackman_window, window_len)
freq, bartlett_FreqResp = frequency_response(bartlett_window, window_len)
freq, kaiser_FreqRespw = frequency_response(kaiser_window, window_len)

plt.figure()
plt.title("Frequency response")
plt.plot(freq, Rectangle_FreqResp, label="Rectangle")
plt.plot(freq, hanning_FreqResp, label="hanning")
plt.plot(freq, sqrt_hanning_FreqResp, label="sqrt_hanning")
plt.plot(freq, hamming_FreqResp, label="hamming")
plt.plot(freq, Voibis_FreqResp, label="Voibis")
plt.plot(freq, blackman_FreqResp, label="blackman")
plt.plot(freq, bartlett_FreqResp, label="bartlett")
plt.plot(freq, kaiser_FreqRespw, label="kaiser")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.legend()
plt.tight_layout()
plt.show()
绘制 窗函数和对应的频率响应

1 如何选择窗函数

  1. 窗函数频谱的主瓣尽量窄,能量尽可能集中在主瓣内,在频谱分析时能获得较高的频率分辨率
  2. 旁瓣增益小且随衰减快,以减小频谱分析时的泄漏失真

 但主瓣既窄,旁辨又小衰减又快的窗函数是不容易找到的,比如矩形窗的主瓣宽度最窄,但旁瓣很大,因此在分析处理对应数据时,需要做综合考虑。

 下图为针对特定的一段语音信号,加矩形窗与汉宁窗的时域波形及频谱图,Fs=8kHz,窗长取256。可以看出,采用矩形窗时,基音谐波的各个峰都比较尖锐,且整个频谱图显得比较破碎,这是因为矩形窗的主瓣较窄,具有较高的频率分辨率,但是其旁瓣增益较高,因而使基音的相邻皆波之间的干扰比较严重。在相邻谐波间隔内有时叠加,有时抵消,出现了一种随机变化的现象,相邻谐波之间发生频率泄露和混叠,而相对来说,Hamming窗会好多。

2 周期窗和对称窗

在 MATLAB 中,每一个窗函数都可以选择 ‘symmetric’ 或 ‘periodic’ 类型。

  • symmetric’ 类型表示窗函数是对称的,主要用于滤波器的设计
  • periodic’ 类型表示窗函数是周期性的,主要用于频谱分析

下图分别画出了周期窗和对称窗,蓝色的是周期窗(periodic),红色的是对称窗(symmetric)。在图形上最大的区别是 对称窗有两个最大值,周期窗的最大值在中间。注意如果做stft的时候使用对称的窗函数是不能完美重建的,会有一个比较小的误差。

下图是8个点的频率响应漏,从图中可以看出, periodic拥有稍微窄一点的主瓣,稍微高一点的旁瓣,和稍微低一点的噪声带宽。

窗长的选择

上面已经说过,帧长一般为10~30ms之间,接下来就具体验证帧长会产生什么影响,为了验证该问题,我们人工造一段很简单的数据进行观察,假设overlap为窗长一半,FFT点数与窗长一致,避免引入补零等情况,即为:

通过上图可以验证:长窗具有较高的频率分辨率,较低的时间分辨率。长窗起到了时间上的平均作用。窗宽的选择需折中考虑。短窗具有较好的时间分辨率,能够提取出语音信号中的短时变化(这常常是分析的目的),损失了频率分辨率。

在python中有很多库都可以创建窗函数,我们一起来探索一下他们是对称窗还是周期窗(非对称)

  • numpy的hanning函数是对称的
  • scipy有hanning函数有sym参数设置,默认是对称的
  • torch的hanning函数有periodic参数设置,默认是非对称的
# -*- coding:utf-8 -*-  
# Author:凌逆战 | Never# Date: 2024/3/8  
"""  
对比不同库中hann窗函数的实现  
如果对称(sym=True)的话,有两个最大值,如果不对称(sym=False)的话,有一个最大值  
  
- numpy的hanning函数是对称的  - scipy有hanning函数有sym参数设置,默认是对称的  
- torch的hanning函数有periodic参数设置,默认是非对称的  
"""  
import numpy as np  
  
import torch  
import scipy.signal as signal  
  
window_len = 512  
  
  
def hann_sym(window_len):  
    """对称hann窗"""  
    win = np.zeros(window_len)  
    for i in range(window_len):  
        win[i] = 0.5 - 0.5 * np.cos(2 * np.pi * i / (window_len - 1))  
    return win  
  
  
def hann_asym(window_len):  
    """非对称hann"""  
    p_win = np.zeros(window_len)  
    for i in range(window_len):  
        p_win[i] = np.sin(np.pi * i / window_len)  
        p_win[i] = p_win[i] * p_win[i]  
    return p_win  
  
  
def my_hann_aysm(win_len):  
    haning_window = np.hanning(win_len + 1)  # 对称的hann窗  
    out = haning_window[0:-1].astype('float32')  # 舍弃最后一个元素  
    return out  
  
  
scipy_sym = signal.windows.hann(window_len, sym=True)  # 对称的hann窗  
scipy_Asym = signal.windows.hann(window_len, sym=False)  # 非对称的hann窗  
hann_sym_c = hann_sym(window_len)  
hann_asym_c = hann_asym(window_len)  
my_hann= my_hann_aysm(window_len)  
  
print(np.allclose(scipy_sym, hann_sym_c))  # True  
print(np.allclose(scipy_Asym, hann_asym_c))  # True  
print(np.allclose(my_hann, hann_asym_c))  # True  
  
numpy_window = np.hanning(window_len)  # 说明numpy的hanning函数是对称的  
print(np.allclose(numpy_window, scipy_sym))  # True  
  
torch_window = torch.hann_window(window_len)  # 非对称  
torch_window_periodic = torch.hann_window(window_len, periodic=False)  # 非周期=对称  
# print(torch.argmax(window_torch))  
  
# 判断两个窗函数是否相等  
print(np.allclose(scipy_Asym, torch_window.numpy(), rtol=1e-3))  # True  
print(np.allclose(scipy_sym, torch_window_periodic.numpy(), rtol=1e-3))  # True
对比不同库中hann窗函数的实现

3 低延迟非对称窗

这里讲的低延迟非对称窗并不是上文的非对称窗(周期窗),而是真正图形上的非对称窗。

在STFT中,通常会使用重叠的窗来处理信号,以提高频谱分辨率和减少频谱泄漏。重叠的窗会导致相邻窗之间存在重叠部分,这就需要使用OLA技术来将这些重叠部分合并起来,以恢复原始信号。

在进行重叠相加的过程中,会引入一定的延迟,这是因为在重叠部分的处理过程中,需要考虑到前一个窗口和后一个窗口之间的重叠,以确保信号能够完美重建。因此,延迟的产生主要是由于重叠窗口的处理过程中所引入的时间偏移。因此延迟产生的主要因素就有窗长、重叠比例、以及窗的形状。

算法处理延迟一般是由于OLA决定的,比如一个窗长为512,帧移为256的hann窗,一般在做OLA的时候,在256个点之后,第一个完美重建的点才会出来,因此延迟等于帧移。如果我们想要将算法延迟压缩到32个点(2ms),第一种方法是使用窗长为64,帧移为32个点的窗,这样我们NFFT=64,会导致频率分辨率很低。第二种方法就是使用低延迟非对称窗。在助听器研究中常使用非对称窗函数。

下面举个例子,sqrthann非对称窗,窗长为512

图2:具有高时间(窗口1)和高频谱分辨率(窗口2)的分析和合成窗,用于窗长为K = 512,M = 64和d=64

延迟等于2M-hop_size,如果M=hop_size,如果延迟等于hop_size。

目前非对称窗窗形状有:Orka窗、Tukey 窗、Asqrt hann 窗

def Orka_forward_window(N1=64, N2=448, hop_size=64, NFFT=512):  
    analysisWindow = np.zeros(NFFT)  
    for n in range(NFFT):  
        if n < N1:  
            analysisWindow[n] = np.sin(n * np.pi / (2 * N1)) ** 2  
        elif N1 <= n <= N2:  
            analysisWindow[n] = 1  
        elif N2 < n <= N2 + hop_size:  
            analysisWindow[n] = np.sin(np.pi * (N2 + hop_size - n) / (2 * hop_size))  
  
    return analysisWindow  
  
  
def Orka_backward_window(N1=64, N2=448, hop_size=64, NFFT=512):  
    synthesisWindow = np.zeros(NFFT)  
    for n in range(NFFT):  
        if n < N2 - hop_size:  
            synthesisWindow[n] = 0  
        elif N2 - hop_size <= n <= N2:  
            synthesisWindow[n] = np.cos(np.pi * (n - N2) / (2 * hop_size)) ** 2  
        elif N2 < n <= N2 + hop_size:  
            synthesisWindow[n] = np.sin(np.pi * (N2 + hop_size - n) / (2 * hop_size))  
    return synthesisWindow
Orka窗
def TukeyAW(n, N, alpha):  
    # assert n >= 0  
    if n < alpha * N:  
        return 0.5 * (1 - np.cos(np.pi * n / (alpha * N)))  
    elif n <= N - alpha * N:  
        return 1  
    elif n <= N:  
        return 0.5 * (1 - np.cos(np.pi * (N - n) / (alpha * N)))  
  
  
def getTukeyAnalysisWindow(filter_length, alpha):  
    analysisWindow = np.zeros(filter_length)  
    for i in range(filter_length):  
        analysisWindow[i] = TukeyAW(i, filter_length, alpha)  
    return analysisWindow  
  
  
def getTukeySynthesisWindow(N, A, B, alpha):  
    synthesisWindow = np.zeros(A)  
    for i in range(A):  
        x = N - A + i  
        numerator = TukeyAW(x, N, alpha)  
        denonminator = 0  
        for k in range(int(A / B)):  
            y = N - A + i % B + k * B  
            denonminator += TukeyAW(y, N, alpha) ** 2  
        synthesisWindow[i] = numerator / denonminator  
  
    synthesisWindow = np.pad(synthesisWindow, (N - A, 0), 'constant', constant_values=0)  
    return synthesisWindow  
Tukey窗
def getAsqrtAnalysisWindow(N, M, d):  
    # filter_length, hop_length, d  
    risingSqrtHann = np.sqrt(np.hanning(2 * (N - M - d) + 1)[:(N - M - d)])  
    fallingSqrtHann = np.sqrt(np.hanning(2 * M + 1)[:2 * M])  # 下降  
  
    window = np.zeros(N)  
    window[:d] = 0  
    window[d:N - M] = risingSqrtHann[:N - M - d]  
    window[N - M:] = fallingSqrtHann[-M:]  
  
    return window  
  
  
def getAsqrtSynthesisWindow(N, M, d):  
    risingSqrtHannAnalysis = np.sqrt(np.hanning(2 * (N - M - d) + 1)[:(N - M - d)])  
    fallingSqrtHann = np.sqrt(np.hanning(2 * M + 1)[:2 * M])  
    risingNoramlizedHann = np.hanning(2 * M + 1)[:M] / risingSqrtHannAnalysis[N - 2 * M - d:N - M - d]  
  
    window = np.zeros(N)  
    window[:-2 * M] = 0  
    window[-2 * M:-M] = risingNoramlizedHann  
    window[-M:] = fallingSqrtHann[-M:]  
  
    return window
Asqrthann窗

通过OLA过程发现,使用非对称窗确实是在hop_size处信号完美重建,代码见仓库。

 

参考

【论文】CEC2 E008 Technical Pape
【论文】Wang Z Q, Wichern G, Watanabe S, et al. STFT-domain neural speech enhancement with very low algorithmic latency[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 31: 397-410.
【论文】Mauler D, Martin R. A low delay, variable resolution, perfect reconstruction spectral analysis-synthesis system for speech enhancement[C]//2007 15th European Signal Processing Conference. IEEE, 2007: 222-226.

 

标签:plt,函数,信号处理,len,hanning,window,语音,np,hann
From: https://www.cnblogs.com/LXP-Never/p/18175066

相关文章

  • Spring Boot + 事务钩子函数,打造高效支付系统!
    作者:avengerEug链接:https://juejin.cn/post/6984574787511123999前言经过前面对SpringAOP、事务的总结,我们已经对它们有了一个比较感性的认知了。今天,我继续安利一个独门绝技:Spring事务的钩子函数。单纯的讲技术可能比较枯燥乏味。接下来,我将以一个实际的案例来描述Spring......
  • 数据中shape变换会用到的函数
    前言:在处理数据的时候,经常需要存储、读取、变换等等操作,其中一个很重要的方面就是对数据进行升维和降维,如何正确的、按照我们自己的处理思路完成数据的操作非常重要,在本文中我们简单了解一些经常使用的函数。concatenate沿着现有的轴连接一系列数组。无论是numpy中、还是pytorch......
  • 罚函数法
    罚函数法 求解约束优化问题: \begin{align*} \mathop{min}\limits_{x}&\quadf(x)\\ s.t.&\quadx\inS \end{align*}其中,$f$是连续函数。可以采用罚函数法将约束优化问题转变为无约束优化问题,具体方法是对目标函数加上惩罚项:$$q(c_k,x)=f(x)+c_kP(x)$$其中:1)数列$\{c_k\}......
  • 事件处理函数中, e.stopPropagation()能放在 onChangeColor()后边执行吗?
    在JavaScript事件处理中,e.stopPropagation()的作用是阻止事件向上冒泡到父元素,也就是说,它防止当前元素的事件继续传播到DOM树上的其他事件监听器。因此,它的位置对于事件流的行为至关重要。将e.stopPropagation()放在onChangeColor()后面执行,在大多数情况下不会改变onChange......
  • 内联函数、引用、汇编
    内联函数内联函数是一种特殊的C++函数,编译器会将它的代码直接插入到调用它的位置,而不是像普通函数那样进行函数调用。这可以减少函数调用的开销,从而提高性能。#include<iostream>usingnamespacestd;intfunc(intv1,intv2){ returnv1+v2;}inlineintfunc1......
  • C语言转写成MIPS指令集汇编以及MIPS指令集汇编中函数调用时栈的变化
    一、问候语欢迎你来到我的博客!二、C语言代码分析  这段C语言代码共有3个函数组成。set_array函数传入1个int类型的变量num,并创建了1个int类型临时变量i和1个临时int类型数组array,里面含有10个单位,此函数主要目的是调用compare函数,并将num和i传入该函数中,得到其函数返回值......
  • 函数调用过程分析
    参考:轩辕之风——从0开始学逆向第7天函数调用约定定义在计算机科学中,调用约定是一种定义子过程从调用处接受参数以及返回结果的方法的约定。不同调用约定的区别在于:参数和返回值放置的位置、参数传递的顺序、调用前设置和调用后清理的工作,在调用者和被调用者之间如何分配,被......
  • 【C语言】---- 文件输入输出与文件管理函数
    1文件输入输出函数1.1打开和关闭文件fopen函数fopen是C标准库中用于打开文件的函数之一。它的原型定义在<stdio.h>头文件中,具体格式如下:FILE*fopen(constchar*filename,constchar*mode);这个函数接受两个参数:filename:一个以字符串形式表示的文件名,用于指定要......
  • pd.merge函数合并DataFrame 保留原index
    C=pd.merge(A,B),merge之后C的行数并不会变。但是A的index丢失了,因为merge之后index是重排的。解决办法:方法1:#可以先把A的index保存一下,A、B中含有"col"列A_index=A.indexC=pd.merge(A,B,on="col",how="left")C.index=A_index方法2:#A、B中含有"col"列,set_index设置C......
  • 使用 __get__ 向已有类实例注入函数
    突然有这样的特殊需求:向已经实例化的类对象添加新方法。例如,我的model本没有实现predict_step方法,现在我想向model注入这个函数:defpredict_step(self,batch,batch_idx,dataloader_idx=0):logits=self(**batch)["logits"]pred=F.softmax(logits,dim=-1)......