首页 > 其他分享 >数据分享|MATLAB、R基于Copula方法和k-means聚类的股票选择研究上证A股数据|附代码数据

数据分享|MATLAB、R基于Copula方法和k-means聚类的股票选择研究上证A股数据|附代码数据

时间:2024-04-29 16:45:32浏览次数:32  
标签:A股 语言 idx means 模型 GARCH 聚类 Copula 数据

全文链接:http://tecdat.cn/?p=31733

最近我们被客户要求撰写关于Copula的研究报告,包括一些图形和统计输出。

Copula方法是测度金融市场间尾部相关性比较有效的方法,而且可用于研究非正态、非线性以及尾部非对称等较复杂的相依特征关系

因此,Copula方法开始逐渐代替多元GARCH模型的相关性分析,成为考察金融变量间关系的流行方法,被广泛地用于市场一体化、风险管理以及期货套期保值的研究中。

国内外学者对于尾部相关性和Copula方法已经有了深入的研究,提出多种Copula模型来不断优化尾部相关系数对于不同情况下股票之间相关性的刻画,对于股票的聚类方法也进行了改进和拓展,然而能够结合这些方法对于资产选择进行研究的较少。尤其是在面对现今股票市场海量级的股票数据,如何从股票间的尾部相关性挖掘到有效信息,得到能够有效规避风险的资产组合是很少有人研究的问题。并且大多尾部相关的分析都只停留在定性的分析中,并且多是在市场与市场之间,板块与板块之间的相关性分析,对于股票间定量的相关性研究还有不足。相信研究成果对于投资者有效的规避风险,寻求最佳的投资组合有较大的帮助。

本文结合Copula方法和聚类思想对大数量级的股票间尾部相关性进行分析,帮助客户构建混合Copula模型并计算股票间尾部相关系数,再根据尾部相关系数选用合理高效的聚类方法进行聚类,为投资者选择投资组合提供有效的建议。

上证A股数据

本文选取上证A股数据  查看文末了解数据免费获取方式  ,其数据来源于wind数据库。由于时间间隔较长,本文将通过对相关系数进行计算来分析其之间的相关性,然后再通过聚类分析将其合并来进行研究。具体步骤如下:

图片

非参数核估计边缘分布

   
j=1077

aj=median(sy(:,j)); %(j=1(SZGY),2(SZSY),3(SZDC),4(GYSY))

bj=median(abs(sy(:,j)-aj))/0.6745;

hj=1.06*bj*1077^(-1/5);

1,固定函数的参数,选择权重的初值为:1/ 3。对权重进行估计。

   
d=cdf('Normal',(sy(n,j)-wj(i))/hj,0,1);

sum=sum+d;

end

2,固定权重为第 1 步的估计值,选择参数的初值为第上一节的估计值,对函数的参数进行估计。

   
%求似然值

%fenbu=xlsread('fenbu.xlsx'); %读取数据,

fenbu=sy;

u=mean(sy);

3,将第 2 步估计得到的参数值作为固定值,权重初值选择第 1 步的估计值,进行权重估计。

   
s(j)=s(j)+b(i); %求似然值

end

end

估计混合 Copula 权重

   
theta=0.5;
for j=1:1000;

k1(1)=0.2; %权重初值

k2(1)=0.3 ;

c3(i)=1077^(-1)*k3(j)*fr(i)*(k1(j)*gu(i)+k2(j)*cl(i)+k3(j)*fr(i))^(-1);

k1(j+1)=k1(j+1)+c1(i); %gu(i),cl(i),fr(i)表示三个函数的密度函数

abs(k3(j+1)-k3(j))<=0.000001); %满足收敛条件是跳出

end

l=length(k1') %收敛时的步骤数目

k1(l),k2(l),k3(l) %收敛时的结果

估计混合 Copula 模型的函数参数

   
%b=b(0); %参数初值

for j=1:1000; %运算步骤

h1(i)=k1*gu_p(i)*gu(i)/(gu_m(i)*(k1*gu(i)+k2*cl(i)+k3*fr(i)));

s1=s1+h1(i); %gu_p 是 Gumbel 密度函数,gu_m 是 Gumbel 的密度函数
   
n=13;d=array(0 dim=c(13 13))  
for(i in 1:(n-1)){  
  d[i i]=1  
  for(j in (i+1):n){
  
    clayton.cop=claytonCopula(3 dim=2);clayton.cop  
    u=pobs(b);u
    

生成随机数

   

M=0.247060*G'+0.441831*C'+0.311109*F'; %生成混合 Copula 随机数

计算每个不同类时的 k-means 聚类结果,并计算平均偏差,且画出图形

   
for c = 2:8

  [idx,ctrs] = kmeans(M,c);

图片


点击标题查阅往期内容

图片

用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

图片

   
[aic,bic] = aicbic([logL1;logL2;logL3;logL4],

图片

当聚类数目为 7 时的 k-means 聚类

   
c=7;

  [idx,ctrs] = kmeans(M,c);

X=M

plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)

上尾

   
hold on

plot(X(idx==4,1),X(idx==4,2),'b.','MarkerSize',12)

hold on

plot(X(idx==5,1),X(idx==5,2),'b.','MarkerSize',12)

hold on

plot(X(idx==6,1),X(idx==6,2),'b.','MarkerSize',12)

hold on

plot(X(idx==7,1),X(idx==7,2),'b.','MarkerSize',12)

hold on

plot(X(idx==8,1),X(idx==8,2),'b.','MarkerSize',12)

hold on

 plot(ctrs(:,1),ctrs(:,2),'kx',...

图片

Average square within cluster

   
library(cluster)  
agn1=aes(delta method="average");agn1
plot(x with.ss")  
lines(x with.ss lty=2)

图片

下尾

图片

Average square within cluster

图片

输出上尾和下尾相关系数

图片

图片

本文将 Copula方法应用到股票市场的相关分析中,以上证A股数据作为研究对象,基于 Copula方法构建了对不同投资组合的风险和收益的预测模型;其次,将聚类思想应用到股票选择中,将选择出来的股票进行聚类分析,得出各个聚类结果。本文不仅考虑了股票之间的相关关系,还考虑了它们之间的相关性。

输出股票类别

图片

数据获取

在公众号后台回复“a股数****据”,可免费获取完整数据。


图片


图片

点击文末 “阅读原文”

获取全文完整代码数据资料。

本文选自《MATLAB、R基于Copula方法和k-means聚类的股票选择研究上证A股数据》。

点击标题查阅往期内容

用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析
Copula 算法建模相依性分析股票收益率时间序列案例
Copula估计边缘分布模拟收益率计算投资组合风险价值VaR与期望损失ES
MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析
R语言多元Copula GARCH 模型时间序列预测
python中的copula:Frank、Clayton和Gumbel copula模型估计与可视化
R语言中的copula GARCH模型拟合时间序列并模拟分析
matlab使用Copula仿真优化市场风险数据VaR分析
R语言多元Copula GARCH 模型时间序列预测
R语言Copula函数股市相关性建模:模拟Random Walk(随机游走)
R语言实现 Copula 算法建模依赖性案例分析报告
R语言ARMA-GARCH-COPULA模型和金融时间序列案例
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言COPULA和金融时间序列案例
matlab使用Copula仿真优化市场风险数据VaR分析
matlab使用Copula仿真优化市场风险
R语言多元CopulaGARCH模型时间序列预测
R语言Copula的贝叶斯非参数MCMC估计
R语言COPULAS和金融时间序列R语言乘法GARCH模型对高频交易数据进行波动性预测
R语言GARCH-DCC模型和DCC(MVT)建模估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
R语言时间序列GARCH模型分析股市波动率
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略
R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
R语言多元Copula GARCH 模型时间序列预测
R语言使用多元AR-GARCH模型衡量市场风险
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用Garch模型和回归模型对股票价格分析
GARCH(1,1),MA以及历史模拟法的VaR比较
matlab估计arma garch 条件均值和方差模型
R语言ARMA-GARCH-COPULA模型和金融时间序列案例

标签:A股,语言,idx,means,模型,GARCH,聚类,Copula,数据
From: https://www.cnblogs.com/tecdat/p/18166151

相关文章

  • vue:子组件从后台获取数据期间,父组件被遮罩覆盖
    效果:父组件代码<template><el-containerv-loading="loading"class="container"element-loading-background="rgba(1,35,54,0.8)"><h1>这是父组件</h1><HelloWorldmsg="Welcometo......
  • openGauss 查看数据
    查看数据使用系统表pg_tables查询数据库所有表的信息。openGauss=#SELECT*FROMpg_tables;使用gsql的\d+命令查询表的属性。openGauss=#\d+customer_t1;执行如下命令查询表customer_t1的数据量。openGauss=#SELECTcount(*)FROMcustomer_t1;执行如下命......
  • openGauss 查看数据库连接数
    查看数据库连接数背景信息当用户连接数达到上限后,无法建立新的连接。因此,当数据库管理员发现某用户无法连接到数据库时,需要查看是否连接数达到了上限。控制数据库连接的主要以下几种选项。全局的最大连接数:由运行参数max_connections指定。某用户的连接数:在创建用户时由CREAT......
  • Node-RED实现OPC DA数据采集
    1、OPCDAREAD组件BUG汇总(1)当通过Node-RED编辑页面导入流程文件后,或删除报错的节点,并部署后,输出窗口会一直报Error信息,如下图所示解决方法:经过测试,重新部署还是会报错,需要重启Node-RED容器,具体原因猜测可能是因为NodeRED缓存了之前部署好的报错节点,即使删除了,还是会报错。(2)设......
  • 报表查询数据异常解决方法
      缘起  今天早上一到公司,技术支持的小伙就说一个后台报表,计算的任务完成率超过100%,有异常,客户要用,比较急,要解决这个问题。   解决过程    自从接了上任的报表计算,这个就头疼,没办法硬着头皮查什么原因,报表的SQL比较简单,一个查:接受任务数表a,一个查:完成任......
  • oracle数据导入导出,备份还原命令expdp&impdp(只导出元数据,不导出表数据,最全,最完善的步
    感谢金龙鱼先生分享,原文来自https://blog.csdn.net/kou869929526/article/details/125791113一,编码要求以及数据库版本要求检查数据库版本(用于决定导出时生成为哪个版本的dmp头文件)selectversionfromv$instance;检查字符集是否一致(字符集不一致,不能导入)selectuserenv(......
  • linx使用命令还原数据库(source还原方式)
    进入到数据库mysql-udatatablename-p//参数解析:datatablename是连接数据库的用户输入数据库密码: 成功进入数据库: 2、可以查看当前用户有哪些数据库权限 showdatabases;3、进入到指定的数据库usetest;//参数解析:test-是数据库名称4、查看当前数据......
  • openGauss MOT数据采集速度
    MOT数据采集速度该测试模拟海量物联网、云端或移动端接入的实时数据流,快速持续地把海量数据注入到数据库。本次测试涉及大量数据采集,具体如下:1000万行数据由500个线程发送,2000轮,每个insert命令有10条记录(行),每条记录占200字节。客户端和数据库位于不同的机器上。数据库服......
  • openGauss 查看数据
    查看数据使用系统表pg_tables查询数据库所有表的信息。openGauss=#SELECT*FROMpg_tables;使用gsql的\d+命令查询表的属性。openGauss=#\d+customer_t1;执行如下命令查询表customer_t1的数据量。openGauss=#SELECTcount(*)FROMcustomer_t1;执行如下命......
  • openGauss 查看数据库连接数
    查看数据库连接数背景信息当用户连接数达到上限后,无法建立新的连接。因此,当数据库管理员发现某用户无法连接到数据库时,需要查看是否连接数达到了上限。控制数据库连接的主要以下几种选项。全局的最大连接数:由运行参数max_connections指定。某用户的连接数:在创建用户时由CREAT......