首页 > 其他分享 >js逆向实战之企名片返回数据解密

js逆向实战之企名片返回数据解密

时间:2024-04-28 19:44:20浏览次数:27  
标签:之企 16 ++ 解密 js hD0SyTZKPEdmDun new Array BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy

url:https://www.qimingpian.com/finosda/project/pinvestment

分析过程

  1. 抓流量包,发现回显数据都是加密的。
    image
    image

  2. 想要找到解密逻辑,可以参考上一篇文章的思路,直接搜索拦截器。
    image

  3. 有五处,只需要看响应拦截器即可。

  • 第一处响应拦截器可以看到e.data,有经验的人大概就可以判断出来解密逻辑在这里了。
    image
  • 第二处响应拦截器,都是js的原生函数,不是解密逻辑。
    image
  1. 在第二处响应拦截器,打断点,刷新界面。
    image
    可以看到e.data数据中就是回显的加密数据,说明找对了地方。

  2. 单步调试,看哪里对这个数据进行了处理。
    image

  3. (t.data = Object(d.a)(t.encrypt_data))这行代码对t.encrypt_data进行了处理,所以很大概率解密逻辑跟Object(d.a)有关,定位该函数。
    image
    打断点,运行。
    image
    传进来的还是加密数据,但是经过JSON.parse(o("5e5062e82f15fe4ca9d24bc5", a.a.decode(e), 0, 0, "012345677890123", 1))的处理就变成了明文,说明解密逻辑就在这行代码中。
    image

  4. JSON.parse(o("5e5062e82f15fe4ca9d24bc5", a.a.decode(e), 0, 0, "012345677890123", 1))总共涉及两个函数,一个o,一个a.a.decode,由于a.a.decode是直接操作加密数据的,先看这个函数。
    image
    这个函数里面是一些正则匹配替换,然后做了一些位运算。再看其对加密数据处理完后的结果也是乱七八糟的,所以也就没必要理解了,直接抠代码即可。
    image

  5. 再看o函数,也是一堆位运算,直接抠代码即可。
    image

  6. 抠下来的完整的js代码如下:

function s(e) {
    return JSON.parse(o("5e5062e82f15fe4ca9d24bc5", decode(e), 0, 0, "012345677890123", 1))
}


function decode(t) {
    var l = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    var f = /[\t\n\f\r ]/g;
    var e = (t = String(t).replace(f, "")).length;
    e % 4 == 0 && (e = (t = t.replace(/==?$/, "")).length),
    (e % 4 == 1 || /[^+a-zA-Z0-9/]/.test(t)) && u("Invalid character: the string to be decoded is not correctly encoded.");
    for (var n, r, i = 0, o = "", a = -1; ++a < e; )
        r = l.indexOf(t.charAt(a)),
        n = i % 4 ? 64 * n + r : r,
        i++ % 4 && (o += String.fromCharCode(255 & n >> (-2 * i & 6)));
    return o
}


function o(e, t, i, n, a, o) {
    var s, c, r, l, d, u, h, p, f, m, v, g, y, b, C = new Array(16843776,0,65536,16843780,16842756,66564,4,65536,1024,16843776,16843780,1024,16778244,16842756,16777216,4,1028,16778240,16778240,66560,66560,16842752,16842752,16778244,65540,16777220,16777220,65540,0,1028,66564,16777216,65536,16843780,4,16842752,16843776,16777216,16777216,1024,16842756,65536,66560,16777220,1024,4,16778244,66564,16843780,65540,16842752,16778244,16777220,1028,66564,16843776,1028,16778240,16778240,0,65540,66560,0,16842756), _ = new Array(-2146402272,-2147450880,32768,1081376,1048576,32,-2146435040,-2147450848,-2147483616,-2146402272,-2146402304,-2147483648,-2147450880,1048576,32,-2146435040,1081344,1048608,-2147450848,0,-2147483648,32768,1081376,-2146435072,1048608,-2147483616,0,1081344,32800,-2146402304,-2146435072,32800,0,1081376,-2146435040,1048576,-2147450848,-2146435072,-2146402304,32768,-2146435072,-2147450880,32,-2146402272,1081376,32,32768,-2147483648,32800,-2146402304,1048576,-2147483616,1048608,-2147450848,-2147483616,1048608,1081344,0,-2147450880,32800,-2147483648,-2146435040,-2146402272,1081344), w = new Array(520,134349312,0,134348808,134218240,0,131592,134218240,131080,134217736,134217736,131072,134349320,131080,134348800,520,134217728,8,134349312,512,131584,134348800,134348808,131592,134218248,131584,131072,134218248,8,134349320,512,134217728,134349312,134217728,131080,520,131072,134349312,134218240,0,512,131080,134349320,134218240,134217736,512,0,134348808,134218248,131072,134217728,134349320,8,131592,131584,134217736,134348800,134218248,520,134348800,131592,8,134348808,131584), k = new Array(8396801,8321,8321,128,8396928,8388737,8388609,8193,0,8396800,8396800,8396929,129,0,8388736,8388609,1,8192,8388608,8396801,128,8388608,8193,8320,8388737,1,8320,8388736,8192,8396928,8396929,129,8388736,8388609,8396800,8396929,129,0,0,8396800,8320,8388736,8388737,1,8396801,8321,8321,128,8396929,129,1,8192,8388609,8193,8396928,8388737,8193,8320,8388608,8396801,128,8388608,8192,8396928), x = new Array(256,34078976,34078720,1107296512,524288,256,1073741824,34078720,1074266368,524288,33554688,1074266368,1107296512,1107820544,524544,1073741824,33554432,1074266112,1074266112,0,1073742080,1107820800,1107820800,33554688,1107820544,1073742080,0,1107296256,34078976,33554432,1107296256,524544,524288,1107296512,256,33554432,1073741824,34078720,1107296512,1074266368,33554688,1073741824,1107820544,34078976,1074266368,256,33554432,1107820544,1107820800,524544,1107296256,1107820800,34078720,0,1074266112,1107296256,524544,33554688,1073742080,524288,0,1074266112,34078976,1073742080), T = new Array(536870928,541065216,16384,541081616,541065216,16,541081616,4194304,536887296,4210704,4194304,536870928,4194320,536887296,536870912,16400,0,4194320,536887312,16384,4210688,536887312,16,541065232,541065232,0,4210704,541081600,16400,4210688,541081600,536870912,536887296,16,541065232,4210688,541081616,4194304,16400,536870928,4194304,536887296,536870912,16400,536870928,541081616,4210688,541065216,4210704,541081600,0,541065232,16,16384,541065216,4210704,16384,4194320,536887312,0,541081600,536870912,4194320,536887312), A = new Array(2097152,69206018,67110914,0,2048,67110914,2099202,69208064,69208066,2097152,0,67108866,2,67108864,69206018,2050,67110912,2099202,2097154,67110912,67108866,69206016,69208064,2097154,69206016,2048,2050,69208066,2099200,2,67108864,2099200,67108864,2099200,2097152,67110914,67110914,69206018,69206018,2,2097154,67108864,67110912,2097152,69208064,2050,2099202,69208064,2050,67108866,69208066,69206016,2099200,0,2,69208066,0,2099202,69206016,2048,67108866,67110912,2048,2097154), N = new Array(268439616,4096,262144,268701760,268435456,268439616,64,268435456,262208,268697600,268701760,266240,268701696,266304,4096,64,268697600,268435520,268439552,4160,266240,262208,268697664,268701696,4160,0,0,268697664,268435520,268439552,266304,262144,266304,262144,268701696,4096,64,268697664,4096,266304,268439552,64,268435520,268697600,268697664,268435456,262144,268439616,0,268701760,262208,268435520,268697600,268439552,268439616,0,268701760,266240,266240,4160,4160,262208,268435456,268701696), $ = function(e) {
        for (var t, i, n, a = new Array(0,4,536870912,536870916,65536,65540,536936448,536936452,512,516,536871424,536871428,66048,66052,536936960,536936964), o = new Array(0,1,1048576,1048577,67108864,67108865,68157440,68157441,256,257,1048832,1048833,67109120,67109121,68157696,68157697), s = new Array(0,8,2048,2056,16777216,16777224,16779264,16779272,0,8,2048,2056,16777216,16777224,16779264,16779272), c = new Array(0,2097152,134217728,136314880,8192,2105344,134225920,136323072,131072,2228224,134348800,136445952,139264,2236416,134356992,136454144), r = new Array(0,262144,16,262160,0,262144,16,262160,4096,266240,4112,266256,4096,266240,4112,266256), l = new Array(0,1024,32,1056,0,1024,32,1056,33554432,33555456,33554464,33555488,33554432,33555456,33554464,33555488), d = new Array(0,268435456,524288,268959744,2,268435458,524290,268959746,0,268435456,524288,268959744,2,268435458,524290,268959746), u = new Array(0,65536,2048,67584,536870912,536936448,536872960,536938496,131072,196608,133120,198656,537001984,537067520,537004032,537069568), h = new Array(0,262144,0,262144,2,262146,2,262146,33554432,33816576,33554432,33816576,33554434,33816578,33554434,33816578), p = new Array(0,268435456,8,268435464,0,268435456,8,268435464,1024,268436480,1032,268436488,1024,268436480,1032,268436488), f = new Array(0,32,0,32,1048576,1048608,1048576,1048608,8192,8224,8192,8224,1056768,1056800,1056768,1056800), m = new Array(0,16777216,512,16777728,2097152,18874368,2097664,18874880,67108864,83886080,67109376,83886592,69206016,85983232,69206528,85983744), v = new Array(0,4096,134217728,134221824,524288,528384,134742016,134746112,16,4112,134217744,134221840,524304,528400,134742032,134746128), g = new Array(0,4,256,260,0,4,256,260,1,5,257,261,1,5,257,261), y = e.length > 8 ? 3 : 1, b = new Array(32 * y), C = new Array(0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0), _ = 0, w = 0, k = 0; k < y; k++) {
            var x = e.charCodeAt(_++) << 24 | e.charCodeAt(_++) << 16 | e.charCodeAt(_++) << 8 | e.charCodeAt(_++)
              , T = e.charCodeAt(_++) << 24 | e.charCodeAt(_++) << 16 | e.charCodeAt(_++) << 8 | e.charCodeAt(_++);
            x ^= (n = 252645135 & (x >>> 4 ^ T)) << 4,
            x ^= n = 65535 & ((T ^= n) >>> -16 ^ x),
            x ^= (n = 858993459 & (x >>> 2 ^ (T ^= n << -16))) << 2,
            x ^= n = 65535 & ((T ^= n) >>> -16 ^ x),
            x ^= (n = 1431655765 & (x >>> 1 ^ (T ^= n << -16))) << 1,
            x ^= n = 16711935 & ((T ^= n) >>> 8 ^ x),
            n = (x ^= (n = 1431655765 & (x >>> 1 ^ (T ^= n << 8))) << 1) << 8 | (T ^= n) >>> 20 & 240,
            x = T << 24 | T << 8 & 16711680 | T >>> 8 & 65280 | T >>> 24 & 240,
            T = n;
            for (var A = 0; A < C.length; A++)
                C[A] ? (x = x << 2 | x >>> 26,
                T = T << 2 | T >>> 26) : (x = x << 1 | x >>> 27,
                T = T << 1 | T >>> 27),
                T &= -15,
                t = a[(x &= -15) >>> 28] | o[x >>> 24 & 15] | s[x >>> 20 & 15] | c[x >>> 16 & 15] | r[x >>> 12 & 15] | l[x >>> 8 & 15] | d[x >>> 4 & 15],
                i = u[T >>> 28] | h[T >>> 24 & 15] | p[T >>> 20 & 15] | f[T >>> 16 & 15] | m[T >>> 12 & 15] | v[T >>> 8 & 15] | g[T >>> 4 & 15],
                n = 65535 & (i >>> 16 ^ t),
                b[w++] = t ^ n,
                b[w++] = i ^ n << 16
        }
        return b
    }(e), L = 0, S = t.length, z = 0, I = 32 == $.length ? 3 : 9;
    p = 3 == I ? i ? new Array(0,32,2) : new Array(30,-2,-2) : i ? new Array(0,32,2,62,30,-2,64,96,2) : new Array(94,62,-2,32,64,2,30,-2,-2),
    2 == o ? t += "        " : 1 == o ? i && (r = 8 - S % 8,
    t += String.fromCharCode(r, r, r, r, r, r, r, r),
    8 === r && (S += 8)) : o || (t += "\0\0\0\0\0\0\0\0");
    var B = ""
      , F = "";
    for (1 == n && (f = a.charCodeAt(L++) << 24 | a.charCodeAt(L++) << 16 | a.charCodeAt(L++) << 8 | a.charCodeAt(L++),
    v = a.charCodeAt(L++) << 24 | a.charCodeAt(L++) << 16 | a.charCodeAt(L++) << 8 | a.charCodeAt(L++),
    L = 0); L < S; ) {
        for (u = t.charCodeAt(L++) << 24 | t.charCodeAt(L++) << 16 | t.charCodeAt(L++) << 8 | t.charCodeAt(L++),
        h = t.charCodeAt(L++) << 24 | t.charCodeAt(L++) << 16 | t.charCodeAt(L++) << 8 | t.charCodeAt(L++),
        1 == n && (i ? (u ^= f,
        h ^= v) : (m = f,
        g = v,
        f = u,
        v = h)),
        u ^= (r = 252645135 & (u >>> 4 ^ h)) << 4,
        u ^= (r = 65535 & (u >>> 16 ^ (h ^= r))) << 16,
        u ^= r = 858993459 & ((h ^= r) >>> 2 ^ u),
        u ^= r = 16711935 & ((h ^= r << 2) >>> 8 ^ u),
        u = (u ^= (r = 1431655765 & (u >>> 1 ^ (h ^= r << 8))) << 1) << 1 | u >>> 31,
        h = (h ^= r) << 1 | h >>> 31,
        c = 0; c < I; c += 3) {
            for (y = p[c + 1],
            b = p[c + 2],
            s = p[c]; s != y; s += b)
                l = h ^ $[s],
                d = (h >>> 4 | h << 28) ^ $[s + 1],
                r = u,
                u = h,
                h = r ^ (_[l >>> 24 & 63] | k[l >>> 16 & 63] | T[l >>> 8 & 63] | N[63 & l] | C[d >>> 24 & 63] | w[d >>> 16 & 63] | x[d >>> 8 & 63] | A[63 & d]);
            r = u,
            u = h,
            h = r
        }
        h = h >>> 1 | h << 31,
        h ^= r = 1431655765 & ((u = u >>> 1 | u << 31) >>> 1 ^ h),
        h ^= (r = 16711935 & (h >>> 8 ^ (u ^= r << 1))) << 8,
        h ^= (r = 858993459 & (h >>> 2 ^ (u ^= r))) << 2,
        h ^= r = 65535 & ((u ^= r) >>> 16 ^ h),
        h ^= r = 252645135 & ((u ^= r << 16) >>> 4 ^ h),
        u ^= r << 4,
        1 == n && (i ? (f = u,
        v = h) : (u ^= m,
        h ^= g)),
        F += String.fromCharCode(u >>> 24, u >>> 16 & 255, u >>> 8 & 255, 255 & u, h >>> 24, h >>> 16 & 255, h >>> 8 & 255, 255 & h),
        512 == (z += 8) && (B += F,
        F = "",
        z = 0)
    }
    if (B = (B += F).replace(/\0*$/g, ""),
    !i) {
        if (1 === o) {
            var j = 0;
            (S = B.length) && (j = B.charCodeAt(S - 1)),
            j <= 8 && (B = B.substring(0, S - j))
        }
        B = decodeURIComponent(escape(B))
    }
    return B
}

测试代码如下:

var e = "bOnqtWHqs4vudLnK0KY4XY1THnLjDMjnDojTkTM8SMGIkOlyjfDfxLVm6UuR3uhW73Xpv1aZl9d6UMKO2CROI0Rs27O8cGfwT2495gyrBXxevkBf5IGnuqaodWRw71swd58i1QBBbvghvMCAZOfn3/lUpGZgd0kku+oP98BP3Y1f7GLsEohNrSd2v5daQLgNKVYb/7peqCdMjR2G+nQpsePm/FAm5aq72DZEyY1NXN+aCmRYHG27cczPC3Pj35V2D8vlf41bYHNAj8aOpENtUmxpvuKFnFLyDhx1m1r4Akr5fYodQrdD3W/DWp67+RAFwRnWJNEtq6sxkey1HB6x7XKIes5zxl3Eue4JE4j/qN60ZclIizy/HpFX10F1X3/NVpEaati5KHADN5kozMF4UzEfQ4hxD7NFog2b6IWL3LGKQbJUfMDDCLLX2FF+d51fxQkTQ1031F/V7/1234SIrsY4EY3LbCMcFSIwNK3yRTmhU0WGmMR5+tgZ7jY6JlJpq3geHqSwuE3BnOpwoiyZs4fyGcdqf/Us2YiJOOqfnrf6+XwRSflDb9hlg7pIZX+sEmznvq3e95NV1C5tUgIJeBvBXTqfg1iUhpz+DtqP8qmVeXHv2IThCGKEVo/jVE2NcI8RyZNwcC6jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtNZudufbPyH0V7D2xokKOOiuz5jDYc5dSbvy1ps2+ncfL5+zq5s/GfbFvgmby5s2ERTeP/NiAra7iomZ7RPxfq9WkAANRpb3GFAg7TmbZvqysOPnFbesWaiENSi3BsYJLdYrs8Vbz2DdRgwXjDY3na6AsTyEg8xIEJfrmkpX3MyigBc9+5aOGpIlY0NQC7Tf/JgzoBFxWS7ibIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15+yjJN06VgDqbwXCNeYi5V4aS3YElZjlz923jD+K8ivNzepfuzaOsi52XE3NvxVTieBvzn/2Wmgb1Qe7tvNQdPG11Jk2lOBp1bzgfeWOWcFQmvOPHuT/U0YTr0OqBdcAG7mHaXGSn9W/z84NJ3dITxVvdSAOmOxngYnu9Z4hoqgWOE0noAjFwGiwIpWa8KUnUs0uKDb1JfHppyvN9aleLGXGa7+LgrO0XzrJXr3IpaOeOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYNyL9JW+ayG+HxPPSAGGJCp+3MrNccZxWxFXY/U8qG/iWo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUl7izLcOAo5QT7SrOZsBG9KinxQNPgid7lNdhiRY4e/4oinUQ4Ulod68QUUsYFZs1Zwq6BHxElom/r6f879O2lqmsUHMd/XLzrHNklyA4WXvtUyuz2ZyX3GjAt2e1JtQA0lea1orJaxWbzgfeWOWcFQIHz97VOrJDgQHkWXBFWntmHGUz1bQeuBP0Kc954eUS5V6bXsuWwy6VMYDqYQ/yO4bQTrh6aOJGZA42KAd06RRTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3xoBFSbXLLGz+TV71cj4MegKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSs5EGEdBMP2Tm/MY15NrLgoRW+ycDzAssfpsiObhCnUYRmxUCbjUG5rGmTgaD687vbaQXVMVfsQIYaaLxPqAzWCReCx//aIC4sc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64E/Qpz3nh5RLlXptey5bDLpdhcj8fe7Em2kg3J6/s/uq5IsHd0Otp7IfAVc5cv0dOMS8/BLt4dbCEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9OuQQwX6x772FbKIl1KxpyWvmvrC0KcWMRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTZxdr/38UqZsVrv51y4yHsiz5lRpBGozzgqHYMZX7SrCY07Y7w2t1ErB/JaazjUKkKfuwJSQPNGTTMCIIFNpFiC4Ld55MefDizxNIbIADIrQUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaT76Wkxc59e0uccUGXgJjq0VfsUjSMJE3GlFQRw6ucNJxQETf174B1qB4BVmZvY2jgKm1fIzi/fR5c0ShJyKEeoSffkJ+Fb6vt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi33978/z0WoGrVPJFihSx+yra+a+sLQpxYxFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNy3HY/okPpRFU0I4klVoWamBYaErU94aWkCbjuP709zvcbVIS8DEwOFGDcUMu4UnvpBhLczJL7qIcGbhdNEObnG1gHz25aiA2H051xp+V8iVQlkbAQoVSobjE76CA8SlplBGML34dkQeoHYABLvAfLkZIkwL0XvU1o4/zAWJSDcVTyWoTITjLTrjE76CA8SlpSs6ToYyUfvfycpl8MgHnrC6olbU/RGZR/e/P89FqBq2pjrONbB+UlY6JOCRq6Bgp1yEXjULjyQzrVdN7pzQzjin3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g39Ib2novS41IQiuGJhtjaAdQxo4+V2ZLVhBrBdTf6e8qO/IWsNNvfJEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E0YAm3jAN6OMugZKxXWI0hhHkWZy6zpvaRksprrQ1iXWs8/A9Qe7pfY6wqnQTuHYODN33x9DteqmOngmSHw5UxGcu6X9LWDDLEfTnXGn5XyJVCWRsBChVKhuMTvoIDxKWmUEYwvfh2RB6gdgAEu8B8uRkiTAvRe9TWjj/MBYlINxVPJahMhOMtOuMTvoIDxKWksAWEUWYyENg44/4frg4uTEIrhiYbY2gHUMaOPldmS1YQawXU3+nvKnFC/ZVzQy6T/WhKbyRwCBN55fb/MsdPihoU1jLZfdyTeGQbQZfEiq8E01ntFGRdscuRO4/J4Dura+IE1YfqYhsGtK7kpQ3GdTKj9+8c1fcJzgWEV4Xgg0mPBPFF03AX1Y4OzwJUH7OxOsqUERVcEhiplOhbW+OPgtUAIjd0y/hCVIVO9opjXDjoHExGqcLsXNa9MCLkHNaLfwYMDyZvfOd9SoMk/D34Bo7VA6JDJLfCNQfFdznyC1zfadVd094TL+PMqGSZ74URDs0VHIsiNYkhU6ZU/j8nzCogDK1xJTpV4YalGpnALS29KFeZWg6F+dmYCure6XPlp0xPGI71klQI4vWNxFIsrZd3Rg3tGbTtmG1B+PvreCOapqqipHP6snd1noIW4Qu/JQvUXgAs9PDapjcyYlk1Bomx8Ox78eGrFlPmtVbOeHf9EiMsNP+QlZULFwMEMT3HndXRfvMZfKLE/H/NxlRloitUxQG5gwng/qsoeNOV/iKfWkZum3Hmn9Ib2novS41K6EJnX21qQFp64nytYpozvMEK9fLoeV2mL7rcKStPT5fU9vLygd7qw9/c01oBw4T7I5mvU4olVv5pMBjvhhLUODhA/HfEuTErFARN/XvgHWpZnET9tXB96bw0wzf+KidiEs1p14QzksI4WGkyjlVezLBAxhuTT+gme45nsSsHXdT6yJy2GCvBZgrfs/ix0rXYXCLZ1sNyKfgKI6wSkpWNi9/3aZVi10op4GQq9GdBwMiB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxEHzUmytZWOF54lKYMrm4xhEdSg6K52Gm2jWKHGXrNcwoAhdP7bLQIoxgqF+pdN3rzRqNj9LBnLrf/cLT+SeMmFGn0IS4WDbnPkQmqw37wNtLUEs7OBfftn8kHT+mgwEOPOY9cG90c8p1jMpTvWYCBdII4bD/DxHivzRvcV0ogES4hAlUOPHJbDdWUL+Oap3zQMVU1A5LKmPfL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gqSkSIHPvB22CgYcP3ClfHGT+ZGq/zgnrBPq8MAvMhKXArS8Bpb1OcfwnxeuxpVxmbdO7ACnwo4cPkjlOXItLoyLPL25j/5ad2xImLji208VdN6J/7nQ94rbp72/RMTbYnv6ulRSPgrXjFWfo9TGP5r6G/z7gJ29xbuqlaRIkoD3AC2UILU2AqCAj9oALlaR153xnhoEfZm6Z/NNsXl20yr/1WLGtfaNerrZVsfc5xHl6/eKjl9Gz/PdN5fVDnxdsVsX8L136z2ZJ3ixhI8hQx9z1pwqiWxLcPoTbbmg97EZvCBGxj6tw5T051gBQkK6Aid+wqKJfX6xKX+oa5Sq2KWy6ZgCdqo1fnSbT86kfFZNABXdRnlmsXppISad9Mw6JB/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYBg8BOMGgEaGkxnOlCvL4vx67d2pZCXlQABeOAA8K7chQi7SQ4HZ7pEcQRpB0BwsNZ0p6Blb+3wHdi/7Z5kvkiilDEu5iRCER2iMO/qvH54mTeBVuVS+jL7NrGC3vEzb2qC1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVGJPg13/+2RbQ9GYnYJwRA12QKoao2TQX6AoCkYEQbpcQRfPwUr3m2nIMYTPqFRuVF0m0/OpHxWTQAV3UZ5ZrF6V9I49Ko06oau6tbkgsoxVc8Ghu3ZpUTBEpIC9oG8cOq8IEbGPq3DlPTnWAFCQroCJ37Cool9frEpf6hrlKrYpbLpmAJ2qjV+QJaTTKOf014c9pqbGgoKhJwVpknNd0DAH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgGDwE4waARoaTGc6UK8vi/Hrt3alkJeVANRIjNEQpHo6IFho7n6vdi/NdVe/Qx8T4tBwySdOxqqybEtQuUJkNyihGnL21q57kKpJkElSTMH34SWvpNhOTVphWBodiLVTmILULnxf8ybaGjJaI9fFOrkgxhM+oVG5UYk+DXf/7ZFtD0ZidgnBEDXZAqhqjZNBfoCgKRgRBulxBF8/BSvebacgxhM+oVG5UUGmbsfOBd+zrYU3ciHUEggcDY/QqT0l6/9wkrocBTpKGXjM0M+WaZGjaumtumDjp80ulFRuEYkT/WE94Dj9ngd3OrxkPg3mmaaZe7YrgzJ6eJWL7yEIim1II4bD/DxHip6wNskWtaRDSRKIFQEkqU/9NCjbS0MzkXLDktlTKVZ+fL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gqSkSIHPvB22CgYcP3ClfHGT+ZGq/zgnrEmF3MrOi7VS6rCpmZVvth5o2dP36sdW60TsXO3XYJC4+5zZdQqlJZWUkoJMlESx2ugFrcrmCOJgdfEnc8zhyRriKpQsRrr95Xv6ulRSPgrXjFWfo9TGP5r6G/z7gJ29xbuqlaRIkoD3AC2UILU2AqCAj9oALlaR153xnhoEfZm6Z/NNsXl20yqesDbJFrWkQ0kSiBUBJKlP/VnGHWoOaHwU0xaiLMraI8+d3fAoWQ3GAHO2IsxrMsk1ak0zZ9q4CfEeqJwcEz+AvCBGxj6tw5T051gBQkK6Aid+wqKJfX6xKX+oa5Sq2KWy6ZgCdqo1fqMYmMjaloHH6b+PHeSbObl0Wg/ef3ceV3rp3nHNGGKUAqcAlcxSEI58v/3KD1bCgSDVt7fZoJ45/TMwmsob7anOvvv6H1tVOmL5WBPAXb2CpKRIgc+8HbYKBhw/cKV8cZP5kar/OCesUsaQ02F2az/a9EEFFl76KMDE6v6vJvIEX29+Wa9setx1FZES+jpBhk4+H/fC+B60SVinvr3bKisccrK2FTDew1bRz7VXkR1qe/q6VFI+CteMVZ+j1MY/mvob/PuAnb3Fu6qVpEiSgPcALZQgtTYCoICP2gAuVpHXnfGeGgR9mbpn802xeXbTKt/kHuasTZqRM8YOzN+UxNv/cJK6HAU6Shl4zNDPlmmRo2rprbpg46fNLpRUbhGJE/1hPeA4/Z4Hdzq8ZD4N5pmmmXu2K4MyesU+dQnCEEu+CowGs3B0Jpn+pqq4zRpCtGVd0/2a/lDjlTMZyl6CLmH52axzxkVAXqdk8bck/RD9zS1SsTAZoV9bSSu5gOPPi5/5x8fvTgPS36xTV8UwmMbBKRLdegg5+uoKMMmKDUe0q8nr/zENJCAZe0Dcu2bPTMKeih8p/hsKEUAxsgBEnyZzcLJ6bUgIDOkpfTyTd3orbjhrWU2inhV6AreSeisOtQKpzvW/VX7/DzXHnUK1MVBYiP7ZBns4m2pUJRP0tlv+zuYH/hJJG9CtfxJshuw8hQln0NIVILvMrEfrgwda4XAkxIWmiDjdn4wXw4zM2IcDvWnCdO7Ipp88PlI2qng35ZB44PQMjTP8XYZaWP9OGyLGzY/x6zggYI7EgPCJ9aJSdnWL28n2fPOEMaXUWpsoo4IRGktzAcPjgzgFmtEFYQ1VcrcJ/gVkRuoGsy0JDM4bYhWzIArCijJ2n6zs37whCqqlKAjuOIAEWH/twRhElX34vFhRfqRjzd83odEwtUsyqHxa7bs6h6gx+Wxyxnn3zwxEckpBbXzNmEpOU8afRIdIBi21G0XJ+4VK2BfDEd8UPxLeOzOhh2FOQmKpw/+YeGbKqL06ipSySn4gcxjxfi9+f5j5DKjnU6/algYnbllQBm8j8P5QvCpr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJemQh9WVpXT77IvEqsrFYDxFweTsCbC33nk8+RJ9TxEqF9AvQfNlSqdGBF57IOth/dB9DQ93meTqZxxj/O4Zg8eRnoBsCZTMaBWPTtkfuJd8DofEIsJrqzfbTvFISawrg3jUKs3PFrfvuVO8jB0Q+pXWK7PFW89g3aOyQmhOVT4k/1dRvQAUDogKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSKJpB+4OPj0Eunzc1ydF0QRVBiUSc0aiF4y1OmqY9sTbd7qCdakwAGzTUj3Lj2ISObivr50tBJ/eGFy1wFQzBUQGcgnHxSFsWsc2SXIDhZe+1TK7PZnJfcYTBjKanZH5rzLdXtsDrAH5vOB95Y5ZwVAgfP3tU6skOQPDVCB8CAIuYcZTPVtB64LcMvb/1mt/fMok1UYWdJlXrEz5JtRfRoMwN3LT6MTKpP9XUb0AFA6I8aO17jypWI5Ai5HzNi2iDwjiG3f21TfZNB5F4768yNbVhwphMAdq7Kfev0QKTsGfFf3Ffz8Y6Ih+Lu5dokAnTp9rtQaHwBc4CwHTJR42C9yvxAzeMc2up1lU4+JRQvfVJTKU6zVBGCESpiugZwkzK5s6tGSl+ICy2Cs0w49CEaDTpOz/JuSe0J+OllXsZbtHqiyevn7fNm6jPuePMNH/1bFjD0hiPwO38JJmSs5baxpWghZzXiSEi77cyaxT9oKxJLhdaWPiTJwWXB57jYEGp4+du1YQPX90gBO6Gsn2fycdZpbhmo9l2fVL7/0+UE6iwxWqhztn9+EDhEyEXX1OIDaYzxoBKtfstgoYgV6luB1bvjOMyUR3jPwBueardjHDXj1u5xZgApji5RKQh8qZ0ZqapZOlPhb1RPclB5Kygq8mozN6/pKDxPiWQ7rpUG1mF/3TgRJE2JiZeFyBjILjdrTkXAA7clOdQM6FR8ICpWG9PNLdreQ4kg+EnDpcJtduzvCWCeYrSZi10WuGmqTbaOkvzK7nnNQGXfr240EIj/2+pWwWvJGOve72ynJYZEFO79vbIHcejrwnjAzWW37kfgMrMcMZKDtRZgNAutQIIfU3HkUTtSwHzRR3hWSvwjtQmZhoN4miSn1h/7cEYRJV9+LxYUX6kY83YqOe/mTGbnbr5svtw7PcSMflscsZ598++W/Ax7T6MHjZEMOwS53/UqaJYNcaU8JhuHDGEJCLdnkgGLbUbRcn7eHNcTR3fvunLLjAtjBxsn2dkm0pJBc+nPxLeOzOhh2FOQmKpw/+YeGbKqL06ipSySn4gcxjxfi9+f5j5DKjnU8HP2Bo40F6P3xpVEeMZShFr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJemQh9WVpXT77IvEqsrFYD9lrFx3HPxB8LZqhllxRPxcndrN0xgo7vIP7Db/06nkJUglAdirwyRtvF+M5DxKLxBhSI4dWyWk7gfTOJkv1J82ilINBEyBZ5V0qqhx/B+f53jUKs3PFrfvuVO8jB0Q+pXWK7PFW89g3mhEepdsE5edMKzYe6ocI4K8MOm5gsrds0+Cq5PCGNyGjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSZU+4P/Hoa/Ewm4CfpaSgQwWiXB0bi9jNmxvCu72BN5i/UM/glhY2K/Yn+PQrSwtdYfXzumU/BqbQEo5S0MDg8341Wscthurqsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64ACUjcTPcikr5lDX/kxfDULYobYnJZ7EN3BeGb+KxadcfNIVayHbFp6ysPh/1UPXeGPp6K6J/x2pTLlsQ6aQdSPeGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9mjjLxDkrhL/R4Hg+UJhweWvmvrC0KcWMRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTQv0JHFY81ARJsPrTIhRWECMMrH6+A9mJnG7zTGsEghs5wAKL6AH5cLo37hrAARVMgSaASJaRRMNQwzwwJHDMDHROIJhqqmxH5UrSNwAfxZUUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaYDe2p39OlLdm2mvd/Y8pIGQqCcFlTOOAAKm1fIzi/fRGp5Vg8P7FZyOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiH4u7l2iQCdOn2u1BofAFzgepIUD6PZbBK/EDN4xza6nWVTj4lFC99fZ4px4WW4G8XMkmSijsslS6RfIRpePLivBf9orPlaCdooCKhP6XlcOP+HLVIAkTmhsYc5FH0hUQ4bfsskZlouE61AFxtNvhB8I/Y1FrZVLe8wg56PFzOn+0HVEFUo+/HxHhPyxMtJXRzOx5fJIqb71KMKTzH3D0OuPSrrw2mItstQ8skgrCwbIGKjzXO1tUBFlXqAtGDnCgmRdIu5yxSIwjAbtVAmYzG2niZA9tNGuDjxkFFXLND4x7BG3jp/6326omTLnevxcLjMp+FqOyTWbGcqYmbhqaZ66ofUkhuFdytt60JzwBMqNZdDSSg1W+LfEpT7PEa9hIWCTOC5uKfoFqTAaesUupNoW3jH6NQPUOlq+dKc2NWOx6648e4mGTY45dpAqhmiksOxVdTgwMEI+7zoH5mGJRjOJKe7YY3oA0opkpwfxF/VRNKxczQno5lGWBktTKltpxytl+lBFpRH7fwSbRgiprYxgvrwz001DxY73Lv8//VWjdRe5D6j5A64rRctsw4H/eXEFk0WPwcsB4O+j6tznkhyUYMnkp9VR5gRvmfBz0OmED5tNBJvcbw75b8DHtPoweNkQw7BLnf9Spolg1xpTwmITcJlqTi4PxzzakCQV4+H0OXByQ5YgS47Eqw6PPPDyT93w2YuLXXq6THIbYubx9GoQi6sF0OzJEN0dGhC0buW/SBuqR3Nk3UBKwK0SOQ85AvBdDHoCer2LSsxXPDEWR1eTzIHRNkv/Uz+0e1+Evu4e0eTSQidhaZQjjoFTz1/eOOTs1VUZejELJADQIxUQnZGz5rtdN7Be0jcD8bL4WRnReXZwaWpCdFL7PjeXJ1fMnIlygnmHk8QTBNVoUy3KvzmLj/I2n5zDmGglT0scnEBNevAN3xbL647LpmAJ2qjV+24WhFBXk3E2BKASzPq2qarpS/OhCKzUPH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgGDwE4waARoaTGc6UK8vi/Hrt3alkJeVAFGmX7ZRxum2+KXIuOzdGr5IdkRNvVy6kxpBWIjx26gpbCQ/0SrlaB9rOtJcaJPXYsnUNlTUtCiMZ5pcy+D6iRLYUXkZYTF7HYLULnxf8ybaGjJaI9fFOrkgxhM+oVG5UUDY/sHjVet5D0ZidgnBEDXZAqhqjZNBfgySjr2CmHJiBF8/BSvebacgxhM+oVG5UYCyfrhCM0dMao2IbvI/IQ2kBPqZRDAyQFAzoVHwgKlYvEoM3cBfCNTPnd3wKFkNxrwgRsY+rcOU9OdYAUJCugInfsKiiX1+sXLgdv0f4iAAIvSUP5RL6XnkqGm+4hevHyXry4C9KG+d3+Qe5qxNmpEftkEEi3uy2vnl4O42M3PlwmuoEdDUXnbFCI9JAbwrVsDixlG+vR3197bPAX8wkZct/7dKH3lh1FRWSas0aeZfiJ/DeIfQk9w8aYJGm2cfmBrqJilPiNyfhSBENOCQ1VzI+2hreWETDQNp+IPcjN490U6HH9bzij6fAznTbz9Ow9qe2xtzFiFKtyoC1UYFSR3CUL2rJAs30ZAu2cPjsnR3vXnsFKWQsTDk1z4BtuAO5QWPJ2t2atXRcrDMlovA6e/aT/J7rH0gHCjOlMh178F2c/N4uY21SqHG/HWOEkhPnwMCbrhT3KExtgpuEEDsV3JcnXnDQGGuODuL7m2+8OudI07Ta28ZCRjUWHh1g5oLcTBiFamhM7q8+PW5ajpZbFeBI/jFB2jZhMKFxl9DmMn2BQm86LQharnDRWwHazbiDbjOBf9HN+2tkhgctolep5cV/JJahLAtJ4qRTGPRhHJSYhWzIArCijIyKFea3gKRIcUJE0NdN9RfWHiwXKlWA/bZhXHcTjAsQL1pS1pLbgFi7ZBjoWJcIb9ZUoBa8NFB2SQIUGhBiikWy4v1ADO3CQn6+XwRSflDbwPm00Em9xvDt88rKHzLSLPaEZzrXOTTQKxEdWjSfT4rJl+KC7L+rBGEnfAhHe4USpi6NxKSqWDlLBRLnu6v6Ct+f5j5DKjnUzu1U3vHxRyxJ7B6TkFILtZr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJemQh9WVpXT77IvEqsrFYDycR5yKmWly2Oo9uYwZcthijectrzs9YN00eCQfPLV2ws2BzrG9xHT5VregmnpASTIFnJIof9CJSLeiz75az/fK0GPLwLFTUTnCjV7YUb5U83jUKs3PFrfvuVO8jB0Q+pXWK7PFW89g3yRjm9e/9sOihDuQyRJkWnEbCFcmSrEvxYTLuDFUg7V6jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSrsHZAJdG/XGM05PODoQ1LIJvVUl4xaY7qyhkgL4QqWHqfpIynevf2w8/+IL25gg9KgZT+3tAP+nLji/cMrNwUzRFllSxk8k8sc2SXIDhZe+1TK7PZnJfcZ+4T1xxMi+2DI3w5wtwlohvOB95Y5ZwVAgfP3tU6skOLHFHGM9afcOYcZTPVtB64MkY5vXv/bDooQ7kMkSZFpxGwhXJkqxL8S6eO0u2uS5wjok4JGroGCneGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9GzvYKqVYbofMYTRK9zT4vB1Cfm4xSjSV/un1UEJ0WDabIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15vt1JzZ3rT32V7RWIc9tZgnKYWnVvjZznjzkLu0zTbniFDwv6/vOTBEEHKiy74Xf+BhwNB5oA/zWNl6sKp6a4SGVRz8gfxSE9bzgfeWOWcFQmvOPHuT/U0aNycSrBQyqFDsEedsU1VSnz84NJ3dITxVvdSAOmOxngK3bxnGCwfeOOE0noAjFwGoTr0OqBdcAGxQETf174B1rwRUG8EDVqeKmiWDXGlPCY7pFlI2ZLKYDsvLUtQ3a+PgFZcCOFWUBV/cdIyiCSm9aiep2mlygnlt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi32ZYjeDKTw01Kzgi+vQq9xJd7aN+aLCTFFFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNt/CisQt9/gEawBbzLvX2zvazFFZRRWj+bxnbTj8/wM8uT/ZloTXjknhOUzEcE0y5aRL2/XoPn1ETCClrwkmqtM23SwByBPV58/ODSd3SE8VQlkbAQoVSobjE76CA8Slp96hws1rkCQ2oHYABLvAfLkZIkwL0XvU19PyMhlEgGDNTyWoTITjLTrjE76CA8SlpmWI3gyk8NNRflVE5BMcHJ6J6naaXKCeWWD/rEKbW3HZktYv0kdQbtCn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3xxzctHMwVqBC2Ge9C3CTdlg/6xCm1tx2URzQhzRU29mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSdd2oioDzVDOHP2Vys617m72RRLvr4PlEKIQxypAafcdIrEh0vp/4fqOIwihpKryeMze/Ad5Bn0Ozr7oimFMwbVVet96X1bIYsc2SXIDhZe+1TK7PZnJfcZ+4T1xxMi+2DI3w5wtwlohvOB95Y5ZwVAgfP3tU6skOLHFHGM9afcOYcZTPVtB64Mcc3LRzMFagQthnvQtwk3ZYP+sQptbcdmS1i/SR1Bu0Kfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DfJGOb17/2w6MeG8T3lCqsODYgzI7MKGaTZuAQHc+YtO6PG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1KQTJ5Wvj5en8qTSG3Hq23vdtNxL0iHZjP/fBD5Ct+VE4A2VdJ+Cy0sLNazJhFRGQefg3pt/WoWZv56F+qnJkK26oNd2hTEIZmxzZJcgOFl77VMrs9mcl9xn7hPXHEyL7YMjfDnC3CWiG84H3ljlnBUCB8/e1TqyQ4scUcYz1p9w5hxlM9W0HrgyRjm9e/9sOjHhvE95QqrDg2IMyOzChmkK9ouvnDzJvyOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN8kY5vXv/bDonQ3de9FakxFLnmfiFBp01ZwLWkacxSDS/3GvVTDL0K1r/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYDyL+77M0sImE5FCtzhVc54Y7rYHfCHfg7qdWke8aMQNMICsMLsyMNzziJujAUahlH83e1Of0Xe8AygZ5fAHp73a7ejz5vhZWncYlF43NgsmjRkiTAvRe9TVQQzaXlUxKyehOa1m5lOTroX2DAcL1PsexzZJcgOFl7xwJYFVNL+BJ8MxblUxLYg3U0OBueD1kH9nNU66pWkUOAzILY8YxPleYSoECHaBlN36T5VTLADrgeMlVhJ9VRI5m7NPY8GNvEFJfrUi2Vryj+hbKNo0rKCScC1pGnMUg0oaGMRgoi1vFvhyJFEXvZSE8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBF6YqGcqlXYCyz0HOZ2G0y6kaa45Z1ncH/7p9VBCdFg2myB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9ea4/xBAmwVGq7wNreTmZqI+RoRbPwB+2zMfMbSPOKQ4JU/MRLbb8DzGGI7oZ5wbjBBkY7hUXfIzQKGluD3aACsjrCrC/WRaBtW84H3ljlnBUJrzjx7k/1NGjcnEqwUMqhQ7BHnbFNVUp8/ODSd3SE8Vb3UgDpjsZ4Ct28ZxgsH3jjhNJ6AIxcBqV26qIry4kqcs9BzmdhtMupGmuOWdZ3B/BR//fk+z+1EC1SF5rUo3AyLzopKYeROuRsx2BEPY9289aCeCijC7/hMn0zWE00dQtEDAU/x4EyOB/tgXqSNVKsxVWYN4kNQpUPNlEDiielo21BGaw9cY8a/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA/TWOK8LhctYgs6ilBC421zYi433vpGdU6gtkKNSty++7qROLw17iSsPJyhQgo5LxgUs4BXxS+sdYwotT/REMo6b+tOSmZgCMzs6iq0kLgdP0ZIkwL0XvU1UEM2l5VMSsnoTmtZuZTk66F9gwHC9T7Hsc2SXIDhZe8cCWBVTS/gSfDMW5VMS2IN1NDgbng9ZB/9VirqIR/eAuVEJLGvpDOIqoSGi/28MdZ2qom9Gi2nTh1aFTDsaqejr+ujiPRC2vQgsdAj5ThOJKIO5J6c3vTRPHyON55538gpCLm3d+v+1NKEUfvvjE5ZoCxPISDzEgRemKhnKpV2AjCiIS/WHc/eRqbLk/1vdgqvblscDgLyL5wLWkacxSDS/3GvVTDL0K1r/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD4TGbHnafiHa0fW9wBA1dlwBKWYJgnXIoIgcIgHaUdfjHA02zNXkEhQn2yuyA8h5Xd0/RGU0kUc+AAT3iK8AmwCbDBbDe7tzHqHoyzWsKWSlRkiTAvRe9TVQQzaXlUxKyehOa1m5lOTroX2DAcL1PsexzZJcgOFl7xwJYFVNL+BJ8MxblUxLYg3U0OBueD1kH9nNU66pWkUOx5w+3TnZEN5BMAs/cg81t2ov/yvsZnk41YJHj+iI1LdHK0VpavMb6yGTwrxdPzgJkbMdgRD2PdvPWgngoowu/4TJ9M1hNNHULRAwFP8eBMghw8A8LQmBqu+MkFFnM3TJ/qtqHLUhhWu87y753ExvnTyqOm9Jdn3HmyB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eQCJUXK7cp8zcgk6kWHx9EiuDvj/VTNmJkjfjwtlh1y+ifhc/6YayBpLjFqWKIhV+AwAPAM3oSVxDZUlF571NT2veTjtBR0NH284H3ljlnBUJrzjx7k/1NHrM+l0dtJ/6rHNklyA4WXvENki5jQVni/wzFuVTEtiDdTQ4G54PWQfIcPAPC0JgarvjJBRZzN0yf6rahy1IYVrvO8u+dxMb53TJFfMyUz0aK/ro4j0Qtr0dJCJKa9DOSyNlUZjznV8rS8uerUBZr5Vl+tAQRUFI8aRsx2BEPY9289aCeCijC7/hMn0zWE00dQtEDAU/x4EyKcJUB4PoCS40atHvi7ffQ1JaTkADxaIxR49WZhu8ppkDvJ7ceRSOo2bIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15ghBuLwCZwouUh6od80B/bEmWmmKrteT9JKQMaxGVc0FTjV3HxieFFTcWN+s4bT56jigOvrmj9g4gYitGOFyYRDrcyAioTnv5bzgfeWOWcFQmvOPHuT/U0SKS5Viy3jU/Wx9LhnlJHnfz84NJ3dITxVvdSAOmOxngDHXH09kMh4mOE0noAjFwGoTr0OqBdcAGpWHfaBPsIZRUAlt5VtunRI46KsLK/S551ldBe6ioYsKOiTgkaugYKWL7rYigVxX2bKjd3a2L2lCASjDfik7Tzqp+pJeU05/uy4+1h0RHoXAp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN0mCl4TWNkyPybTsT7HTOCwCptXyM4v30bVvhAxenQSNo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUmjVXbelNmIAzrMnvfV1k2R3m33EqjxSP0Ni1X1XKB7KLZG6zPL8JEvFG7ug5SiMyRcQBX3su9s1y1ihxV/Kvb9Fn9qykrmtO7HNklyA4WXvtUyuz2ZyX3Hdl8mowScIqvBxp7QxKkxZbzgfeWOWcFQIHz97VOrJDtVatn0b5a3amHGUz1bQeuB+WrFok5t0rHrGArYCJsXZsAHAQdR0MxqqDzaQojbYzOSLB3dDraeyHwFXOXL9HTjEvPwS7eHWwhJ9+Qn4Vvq+3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q76hLYembFc1UfGp9S2aLfYOIgul3hHFAvIeLdt0lYxc7fqGS5+OyPUWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E21FL/FGTnGoWQG3NS3/4la+TeuaOoNNOy/25h3QugMT9NwppDmlSzOC0QGiUl7oOYqhHecGm91DDUxc0cysJXMXPYiDUH9X6SBuWwaeoOzh1CWRsBChVKhuMTvoIDxKWn0Z4iDVn7YUqgdgAEu8B8uRkiTAvRe9TVOyN8N9gq4KlPJahMhOMtOuMTvoIDxKWmDiILpd4RxQLyHi3bdJWMXiVjQ1ALtN/9pRUEcOrnDScUBE39e+AdageAVZmb2No5YP+sQptbcdmYEH0kqJHYcEn35CfhW+r6XwciLK/6XphE0C0/nDYDvKfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2Dcc5xr5PQ3h8rVerxs1rdGyJtIJAViBsqC/bWYyX/yfQqPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1JcZTorzNilzHFwEY5bhVPigUEgqqgy8Yi6aEKsZ7PySb7kGkJIQUQfq9O2cukvXPUdHuPb70aygUkgmNFE1/0wyr8EzQdFKlyxzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0HrgHOca+T0N4fK1Xq8bNa3RsibSCQFYgbKgqzKxjNYk91QR2noUMyroSt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi3065BDBfrHvvTMIweL542FHd7aN+aLCTFFFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNC/QkcVjzUBGfYEmJk5CBXjr0lkE/p1CYs79uJGTq0EpgczdsIV7b0jodOoNh33OeDTK966kdIrpTh19SqDcl3H7ab+dyK8W9uQ+LP8IuMStQlkbAQoVSobjE76CA8Slp9GeIg1Z+2FKoHYABLvAfLkZIkwL0XvU1TsjfDfYKuCpTyWoTITjLTrjE76CA8SlpOuQQwX6x770zCMHi+eNhR46JOCRq6BgpTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnVTVJfVHf+1Y6wd2uqtv+HHLkTuPyeA7q76hLYembFc1UfGp9S2aLfY86bRSPDoPD+V2Eu+Bx09R659Ze+PiQaQKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSsuLWXTV7PEX950yJn4ZuGbIgCuAF8NnVyIDWTEj7wy85eNCXZ/+8Vrl9qUrLzEIqPhSt+dGhU10asptiNRG43jG8ikND8y9Xsc2SXIDhZe+1TK7PZnJfcd2XyajBJwiq8HGntDEqTFlvOB95Y5ZwVAgfP3tU6skO1Vq2fRvlrdqYcZTPVtB64HLFGNE7WrE4e9DlNfzopl1znGs9uzZHatEwAzoboMCU7Ly1LUN2vj5NB5F4768yNcWMLegeEu2x6rNGq1xrntC4Mq4DQjQxLcuPtYdER6FwKfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2Dcm2SqwHFH8al+Z1Cotof5DWD/rEKbW3HZRHNCHNFTb2aPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1KejmdqYaQfRqDEDeJtitB+QTDYju3y8bw4r6Mnr4/NdSpB4cO32qgW9GOYMi0glXIBcM++rIM3n/Y7DX8E7WQaTvQc+OhGrfmxzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0HrgAJSNxM9yKSvmUNf+TF8NQtWCR4/oiNS3FcPREqjHE+aVVSl1+/mLIOrK4/S5HvSfRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTIlYfA1VX0HHXPyUPIkgMcNRqhkaVnRaRBSaBgJRWBdvxr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD8oakqvcf1soq6tdntMBxOo1i4/zDwkN4klPfMsRAIyi2olDL+RSki3myE6nEu38YbVdOH2vmxOE2S/Y6KnG+a7RLVcVx2s8WmbsKLepXaXLRkiTAvRe9TVQQzaXlUxKySOVP6erpzBvoX2DAcL1PsexzZJcgOFl76xDH6nOfag78MxblUxLYg3U0OBueD1kH6PbeLGArucPR/A0cfhO95YyR0YF4cjk669jaKHxlwTz6z/NJxzuuB4DjSoxYjlpUJKwi6Ffy9g2og7knpze9NE8fI43nnnfyCkIubd36/7UZTaW/k71MEU2cHXHX6/cD/V4XNGP76NQHcHAjr/wht7NR+oXUEiw+yRvNwfmLw/7gTefCDYLcpCW8Y2r0asRjT/b3XXb8iHl8F/2is+VoJ2igIqE/peVw4/4ctUgCROaGxhzkUfSFRDht+yyRmWi4TrUAXG02+EHwj9jUWtlUt6Om0lzEJEbtLQdUQVSj78fVZ6uFqC69r6hdX0ua/VFUcsJLdHV8p5XWR+4CG6RzRa1DyySCsLBsgYqPNc7W1QEWVeoC0YOcKCZF0i7nLFIjCMBu1UCZjMbaeJkD200a4OPGQUVcs0PjHsEbeOn/rfbqiZMud6/FwuMyn4Wo7JNZgZJJMlufjowNTcjIPfklyjs2GqMN/ffF07UfftQAKWq8SlPs8Rr2EhYJM4Lm4p+gc/eolVkJKH7IyLwa7tdKkBIMo6WSIwxbHrrjx7iYZNjKE2d2sdddPFDVQuFqK5le7vOgfmYYlGMCjcjt9Krz0x5Xppcjsj8i9j0Sf9DfA8f7WRfOwStFcrL6vv+WcjzXoWEYkmJxShHauuusJ+MPqSaTAY74YS1DpVea3Kv3vTTxwb0uUO3Bvf3vlzj4R85BW8NMM3/ionYbCijpoTBYYGH8hnHan/1LAJfAU3ljWksi45ixyiywFBQWg+27EjTdSNa6C0QTXpRVdQubVICCXgbwV06n4NYlIac/g7aj/KplXlx79iE4Qjcrv42VAPqAE2cVTNMQTleo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7TWbnbn2z8h9Few9saJCjjors+Yw2HOXUn/2qukW37nXiH7fMHljD2+KpnNxgttlRonzw7e3lkt6bz/YEODNo3zsf6rpSt2DFWQrbZtoWf5M1+Ad1anCie2+ZqWa6X4JqnWK7PFW89g3UYMF4w2N52ugLE8hIPMSBCX65pKV9zMo0wS3kp6cYQ87fqGS5+OyPUWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E2PiWqbVUPg6jLnw1bThFvZBYw57FKQzLeozso0+nIjI3aX9YX7cuFyhcA1H+GAEfzCo9wZ0NxAt7wtCGea1Edq0YUa/Z8K8zqWH6S6oWxhUFCWRsBChVKhuMTvoIDxKWmUEYwvfh2RB6gdgAEu8B8uRkiTAvRe9TWjj/MBYlINxVPJahMhOMtOuMTvoIDxKWmNlUZjznV8raTzDTtr7hc8pc+7JvPHY/lbxann7zilCK/ro4j0Qtr05pTjW6+g519SFfiu0qs1RTx8jjeeed/IKQi5t3fr/tTShFH774xOWaAsTyEg8xIEzo9Nap6hurgMSB4IpdOk2TlQ+9vX4Xnf/un1UEJ0WDabIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15bxi0FcsnMGi/AxaycQXBCQdHWi6vkrkcuIiy0A5InvzKq8joL2fd+oe4qCZ1DLQJlBzUvt8fdNwFhEurf5qhADNRlSUqEcQ7bzgfeWOWcFQmvOPHuT/U0YTr0OqBdcAG7mHaXGSn9W/z84NJ3dITxVvdSAOmOxngYnu9Z4hoqgWOE0noAjFwGiwIpWa8KUnUDEgeCKXTpNnTzXMhn76KyvoWyjaNKygkGMDp2Sj+H2kMVnpwC3gnijNQ4SkvOTDn2fJUnpdEPgWX60BBFQUjxpGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTIY73Lv8//VWjS555Rlh6wMElpOQAPFojFJ7B6TkFILtZr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD7WftQpDcJDi9niKpo7SPJNsKd7FQ1mRQJaZ3ITmT6Hx1h/U79yWit3L5nktubnsV0cWYE7X+/b10MMQFP2GTBdt7lM7XgkQUKCjyl3sOJCeRkiTAvRe9TVQQzaXlUxKyacJUB4PoCS4oX2DAcL1PsexzZJcgOFl7xJVcoPltvFD8MxblUxLYg3U0OBueD1kH2O9y7/P/1VoEzyn7m/itNyW8Y2r0asRjVMinsQkHbk2b31TsTeFJx4ipUhVqQjeO2Tjc068HppVAqbV8jOL99E8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBCX65pKV9zMo6/kXJSTYN1YJgn8SuCIGZ/7p9VBCdFg2myB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eQTm5isYeuAtM8ww/N0kfSD5ur5dgkTxraB/YQWpTH9DNZOObJKyLjcK5JNKxcEoLtXFc/MtP/DLqB8J3O+FIQDUJKczWVrjM284H3ljlnBUJrzjx7k/1NGE69DqgXXABu5h2lxkp/Vv8/ODSd3SE8Vb3UgDpjsZ4GJ7vWeIaKoFjhNJ6AIxcBqE69DqgXXABpZsNbWqHISwWU20E5tKjrla+NTZvgxuMbe1GWsvleeu7a6Yfo6TzciR/+XBMV3v4ZwLWkacxSDSDZl7SsSVxzKiDuSenN700Tx8jjeeed/IKQi5t3fr/tTShFH774xOWaAsTyEg8xIEa5T8wO/WnFutdOFUNoqksB1Cfm4xSjSVSr06NeWTw/+cC1pGnMUg0v9xr1Uwy9Cta/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA9UBjWjbvNriX804rOVmjWdfG5IsY/Ijj0U/Oz3CoHCBH6lTYZ9GH1hqVe0Ft9ZYH1FCdWDacdpwOVS14VY9RVXh0iOaIWHx3TnrtqVagsAuUZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB9Bb8+wiK4itlnYQ6Y5LqeMrXThVDaKpLAdQn5uMUo0lXgcswxP67JT+MdUoG6+LsX7Iw3916XoZtWCR4/oiNS3RytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTIeHJ0sMmI14OzNM53R/gYyorJvAj+zcmV/3GvVTDL0K1r/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD8oakqvcf1soyHbZseuwAGdEcE9vZKYU0AEdmiQ85XZtIh0uXSU5ORUNd3xOWhbHUX0caMUcl5GbEv1vLU1P2XpP0OMZ1Qqs553vqeLtHI7yRkiTAvRe9TVQQzaXlUxKyacJUB4PoCS4oX2DAcL1PsexzZJcgOFl7xJVcoPltvFD8MxblUxLYg3U0OBueD1kH3hydLDJiNeDszTOd0f4GMqKybwI/s3JlRLtQHmQxrbOAqbV8jOL99E8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBGuU/MDv1pxbism8CP7NyZWBBwrK/eaznywBYRRZjIQ2QYZ2SbpSf4JSX61Itla8oyYM6ARcVku4myB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eYmlOrom98za+RKVIJ6dqLzdNO1evtvQZflRYaaZrQfae4FrtgUI0b9s4TZks0vNj7KrVOov2zkPXyhUdstgbA77uhl1vH2IsG84H3ljlnBUJrzjx7k/1NGE69DqgXXABu5h2lxkp/Vv8/ODSd3SE8Vb3UgDpjsZ4GJ7vWeIaKoFjhNJ6AIxcBqE69DqgXXABorJvAj+zcmVgQcKyv3ms58sAWEUWYyENkGGdkm6Un+CUl+tSLZWvKP6Fso2jSsoJJwLWkacxSDSDZl7SsSVxzKiDuSenN700Tx8jjeeed/I0YXyASJyMRZsf6eDCpIjQs9aCeCijC7/hMn0zWE00dQtEDAU/x4EyGziatLx7JCi+MRabXH5U2caoZGlZ0WkQUmgYCUVgXb8a/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA+nbSM4tjJaah/u+doLe6UVf9SmqJrmPTZD/BB0ThC63mdCpCw6OmFungiV0aIB9iVbQE9jrcmL8HLpg1BE/9rBtWz/Kro8aKycviYEknfFwEZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB/9VirqIR/eAirPCw/Xvlwdr3PcPjLEph0/aIRfr69WRpH/5cExXe/hnAtaRpzFININmXtKxJXHMqIO5J6c3vTRPHyON55538gpCLm3d+v+1NKEUfvvjE5ZoCxPISDzEgTOj01qnqG6uH9qbPUCm6CNPtGrG6YP/cn+6fVQQnRYNpsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XuMXwXz9GrP0mB4jH49Ofj8qeBVzW1jPXkHFrcGzAD0GwBT5zu3hKCzgjfBMyBUWKpdEEviM+wpueAr+dtf4EQN64NoLYkpot+76NBLmdssrtnNRFLS9wJFnCTNEy4KISNvOB95Y5ZwVCa848e5P9TRhOvQ6oF1wAbuYdpcZKf1b/Pzg0nd0hPFW91IA6Y7GeBie71niGiqBY4TSegCMXAalduqiK8uJKnHBvS5Q7cG96lXCYB0FtfUm6dL4WiaD56v66OI9ELa9Io9ZURvuJ1HkbMdgRD2PdvPWgngoowu/4TJ9M1hNNHULRAwFP8eBMg8BuJ0NbcCb4HlNR3QAarfGqGRpWdFpEFJoGAlFYF2/Gv80g8Zr+KRNL80sUp0FAzw9snXBBGMmHDUi6wMIRd+cKf2YK/ju8ldFPM8wqaMrPsi8SqysVgPJxHnIqZaXLaWxhkTuU/6UIBrYx14H+JMV21qwppsGDvJsJ40T09nhUmh60hurXcaLwvamWDg9o2zFwQF4sVBNL6ZBNFtAIUuK1YLT0BdujRGSJMC9F71NVBDNpeVTErJpwlQHg+gJLihfYMBwvU+x7HNklyA4WXvElVyg+W28UPwzFuVTEtiDdTQ4G54PWQfJjVU9ES+oDjyZxYKBURojZlQNhyZxbT0x4bxPeUKqw7qyuP0uR70n0crRWlq8xvrIZPCvF0/OAmRsx2BEPY9289aCeCijC7/hMn0zWE00dQtEDAU/x4EyBQzdh6i1dcYGbhVXhbIZ2waoZGlZ0WkQUmgYCUVgXb8a/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA8nEeciplpctp6ygUeXMSxy1VZJuYU8PVZnT9W9QR2T901ROw4KLaPc4EG14tYAduKDyCCMpPJUgNEdEL5TxmmQQUffFsTh4K/Kvpi8IxD6TkZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB80sPJvry4SXxAH0DKOwGrjxiu44jY6sBKI4FkmDvVNjpgu1iY4Ccbir+ujiPRC2vSKPWVEb7idR5GzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTIvaeWulu/gKDYobYnJZ7EN5wLWkacxSDS/3GvVTDL0K1r/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD4TGbHnafiHaob3S4Tpp3GMxowatB45CCxOMCYJB+SkU4OMxIlArIrCRdLQn0n6rgxX+wIldnzvyPc/JrQXXMf9OQDfvWLamFpbYuwQW074cRkiTAvRe9TVQQzaXlUxKyacJUB4PoCS4oX2DAcL1PsexzZJcgOFl7xJVcoPltvFD8MxblUxLYg3U0OBueD1kH72nlrpbv4CgxPApc+32ZEL4x1Sgbr4uxfsjDf3Xpehm1YJHj+iI1LdHK0VpavMb6+7lmR8NcvtxPevrUs4/MZPsfU7NlYoKE5frQEEVBSPGkbMdgRD2PdvPWgngoowu/4TJ9M1hNNHULRAwFP8eBMgJa91FnKaZKijayOPgO/nYk9mIBcm7bCVokQbOEt1+A2v80g8Zr+KRNL80sUp0FAzw9snXBBGMmHDUi6wMIRd+cKf2YK/ju8ldFPM8wqaMrPsi8SqysVgPp20jOLYyWmp3J3x5Zqk2FCLlZ5HQ+3dl3lIN9BXFkSamfH+1Xoy6X06UrWcVVO5BOuqRy8Pcqv7RVUMSIiFxz+2OrphbcTjBi/tZvTjXRnFGSJMC9F71NVBDNpeVTErJpwlQHg+gJLihfYMBwvU+x7HNklyA4WXvElVyg+W28UPwzFuVTEtiDdTQ4G54PWQfCWvdRZymmSrpbZPng7vWu7hstvQEdiVHMOc2VcC4lTpU7bDN0ZB4hgxy+a0rmnuN0LyAgj/PEq/ShFH774xOWaAsTyEg8xIEXpioZyqVdgKuWdwPlT/IyvHYBV7SvZcDDk5Qnc41YAibIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15eTwEHi5UIZfN2NsJY434cgYRBNMLSLQHaU/uISblFqBq3PEe6hKppM9ADilETsaRxx/eFEKqQawZAomW/meko7ggzpIQ5qP8bzgfeWOWcFQmvOPHuT/U0YTr0OqBdcAG7mHaXGSn9W/z84NJ3dITxVvdSAOmOxngYnu9Z4hoqgWOE0noAjFwGpXbqoivLiSprlncD5U/yMrx2AVe0r2XA6OqQuKgBicXRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTId+DyOqTUhVEByZsLrlcjc5/v+429ewPpMxtIeYGiAgKKtxe3ISyBypwLWkacxSDS/3GvVTDL0K1r/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYDycR5yKmWly2o+X3C/BaUB3HnCigVyq5u1+tKVG/TnPHBylQHfAizOIjpIP7NLBQ3WAlpWgVId35UXyShofE1BTzfCqwttPiefQ26D+6xwtfRkiTAvRe9TVQQzaXlUxKyacJUB4PoCS4oX2DAcL1PsexzZJcgOFl7xJVcoPltvFD8MxblUxLYg3U0OBueD1kH3fg8jqk1IVRAcmbC65XI3Of7/uNvXsD6WXkmfxHwiEAs3FJbean/iWW8Y2r0asRjdd52N4eHY2qThZ8lYUiaRIKU9jFSR5mGathB1hl2mMX+hbKNo0rKCScC1pGnMUg0oEHCsr95rOfWRXhFLYmkLHT3fmhtqEJ2GsWbKwbSFaMoUFH6i2MA+gDjSoxYjlpUORhdZ67BnRr3hkG0GXxIqtTEAdHeeuwQpl/l5URiC8kn5EcxCSHOLSgLE8hIPMSBCX65pKV9zMoNTAos08COhqzQmjmgCZywEiQw/koO2d2I1h0s8Aco+GjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSTXkTW9OD2wJFYPQtL7NY+plKDTfHRDseTspGIihweu4CrgGii/RrpPnfOjATOvbxU/IrZKu3nPFDYBiTSSPn/FUp7p6kP2Lisc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64E/Qpz3nh5RLlXptey5bDLrKyee/4a4KderXghFNLn+ZilCKOkSOL2L/SnEqsP3CPajMoz81Jb/mbzhEhRnM/jpYP+sQptbcdmYEH0kqJHYcEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9chppJWtGFA/5d7uEJT10X2vmvrC0KcWMRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTd7w8C4dnufzg/kXFQs0DYLH+i/Uf7LLzGy6uop+6nQUfmE3Dx+hU7bihyd8NTmh0dQRfFh+8U3Uku4TCbNZI1h+wD1FXyNJ6zxNIbIADIrQUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaTNQ4SkvOTDnCTFSLmkbqMZ54z2EPDUQ5UbCFcmSrEvxLp47S7a5LnCOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYNzqBxWCaLSnw+A5TR/NJAa0CptXyM4v30bVvhAxenQSNo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUnH424giIq8Nj565BgjX/juIQFTKdhKa8LPHQ5TdY7FjygJ0xIjtaX10ZonT2Cr/aVwq13B2KWkQWE3pXggpTtXgWCg2K4qaprHNklyA4WXvtUyuz2ZyX3GjAt2e1JtQA0lea1orJaxWbzgfeWOWcFQIHz97VOrJDgQHkWXBFWntmHGUz1bQeuBP0Kc954eUS5V6bXsuWwy6XYZeKAqkH0Tndn8wLtnrtBJ9+Qn4Vvq+06b34cID0zqbDEy/Oqdofin3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3fP78uxz0ki16uIzDJ4d43gKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSWlsJbgq6GEe56T6zsnd+pKefHsQ8Mh6VK5k7814XxXBEFfTgYFt2IuoSxnt7oteNubxQaq5OBNTHXKyTbaByV4kmOt4l4aWzsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64CB1NUMLcjJR0JcS6a8qi/HpbPD9tLBTgwQojxnBbKrR7Ly1LUN2vj5NB5F4768yNbVhwphMAdq7Kfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DfJxcXhDIKnRs+irfky86LYAqbV8jOL99G1b4QMXp0EjaPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1JA/GABE+dtoNjCu78iigikDlpqsnUhnRD+hZWeGRLn0dTGbX0rYPU8OYxk1SoGgQK9w7Q+17i6awJwm0LvezfZCb8gynAniH6xzZJcgOFl77VMrs9mcl9xowLdntSbUANJXmtaKyWsVm84H3ljlnBUCB8/e1TqyQ4EB5FlwRVp7ZhxlM9W0Hrg2eotnpfLnPMd9NFAHz/DOgdZUlSWF6a7FdFzpAad2zfsvLUtQ3a+PkOWhDylSVIaE0iEB6UlMPzKwV03A2zCn5W/iWf5UGQHPHyON55538iXanvCOar0/wtRLgYfwfcplHvRdETJTZJ1iuzxVvPYN0/Qpz3nh5RLYMy/jouNadpYP+sQptbcdlEc0Ic0VNvZo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUsFPHKAF7EQAi5GdGI1oedJ4JzhF+9WmSI+F254Gl6Je1Z1gLyT7yOSHkOROZkuBhDs/Fb/wFbl7W+phr8tST0z8xjdewLd5S7HNklyA4WXvtUyuz2ZyX3GjAt2e1JtQA0lea1orJaxWbzgfeWOWcFQIHz97VOrJDgQHkWXBFWntmHGUz1bQeuCQTTcR0CEbWqcGmstNkqXP9zxUAtB9PcizA+G+kcIOXY6JOCRq6BgpTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3qQyK/4Vx6k4fdMI6n7/BNgKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSRgCVI7fRh5Oo2ZkKY3mPpOAeh2/jIJKAkuiu05Z4vvtc9SkiAUi8EAl2p9UgQXPlL7fbHxL4PtPWdrWMJYFwbLst57H5Fxvhsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64E/Qpz3nh5RLlXptey5bDLozUOEpLzkw5zxDxSUMsHayH3TCOp+/wTZYP+sQptbcdmYEH0kqJHYcEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9M1DhKS85MOdBv3B0JAFueVueoeiTUshMRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTWsRNV0mKVCrdp90mESETj3FfuzGsD8xB8bZoHnpp9gNzcC9JV25rBezMdDIKyuXji1O3/qX3QDMeRRrpivP++0BrqyNQDaT4P7BjDHWRvjCUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaTNQ4SkvOTDnQb9wdCQBbnmqpNCeFBSmUbcys1xxnFbEaacf9zqiegISffkJ+Fb6vt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi30b7cNoujuutg0USkRm47bi4KcrZmtlwD5rrUuDbcnM36/ro4j0Qtr0nob6BCdjdd2hQUfqLYwD6AONKjFiOWlQ5GF1nrsGdGveGQbQZfEiq1MQB0d567BCmX+XlRGILyTc70YPBhaRQLHNklyA4WXvtUyuz2ZyX3GjAt2e1JtQA0lea1orJaxWbzgfeWOWcFQIHz97VOrJDgQHkWXBFWntmHGUz1bQeuAI9dAdcUS9inWK7PFW89g3xjgUYA9EDDtgKyT9mcWlw1g/6xCm1tx2URzQhzRU29mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dScYxA1k6u3RCN4HWjnRYEKS6D3gyt0oGjT6Ev+aOFha20CpJXc1DeA8fZjqs7qK0uJ4PK7T0eZKIbprdM/mMGJizBp9JU3x1Tsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64E/Qpz3nh5RLlXptey5bDLrNicawiHk163deCYUn4Ev5lUlxXx9GrPU8aO17jypWI5Ai5HzNi2iDwjiG3f21TfZNB5F4768yNbVhwphMAdq7Kfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DdR3GN/8rJ87b4OEgrq29W8AqbV8jOL99G1b4QMXp0EjaPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1IdQS4SVHR/E9z34iJShVNAweDvsc6IJ2+lyfkuNiLAXhiYWnGjLK77WdzbBnF6OE/mOpjchRv4GOZ13G+Rv9lLHPh0DhQtr2OxzZJcgOFl77VMrs9mcl9xowLdntSbUANJXmtaKyWsVm84H3ljlnBUCB8/e1TqyQ4EB5FlwRVp7ZhxlM9W0HrgUdxjf/KyfO21wsbCgVVNLKZghFpyNPY+1ldBe6ioYsKOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiH4u7l2iQCdOn2u1BofAFzi2N4yx6PKDgK/EDN4xza6nWVTj4lFC99c2lWDEWt7UD6ADkX2F7DsjLeHg3Y16n2vCCPi3priU473Xpv1aZl9d6UMKO2CROI0Rs27O8cGfwT2495gyrBXxevkBf5IGnuqaodWRw71swd58i1QBBbvghvMCAZOfn3/lUpGZgd0kku+oP98BP3Y1l7YGtSSDbntYJD8lbH1Abg8H8WairoyRMjR2G+nQpsePm/FAm5aq72DZEyY1NXN+aCmRYHG27cczPC3Pj35V2D8vlf41bYHNAj8aOpENtUmxpvuKFnFLyDhx1m1r4Akr5fYodQrdD3W/DWp67+RAFcKsc7+gsi6uljsopckDO9zKAdaI9HiiRcLQzu/GLw57xKU+zxGvYSFgkzgubin6BwZGK+JVWM2vxuhOcaWwrLwVGXCt2f/3meuuPHuJhk2Nwp8bymtsAWiydVNL3F3JEXvQFCUJvM4xi1CW3DWMpphQWzr4YbdIr71emN/slzCfaVoW6Cp5N36hPqVVaCN5W9/c01oBw4T7I5mvU4olVv5pMBjvhhLUOCcX5XwXpp9OXxstWl+s0IXl3CZGuV/Umbw0wzf+KidjsseufPp4OG44WGkyjlVezvEDJt/KTe02e45nsSsHXdT6yJy2GCvBZ6BPoxp+HI1DcZB5CQ5UUtlmJI+VNQ5tvZWljOuguVpPah5z53Qm+6yqeLEDMZ6KPRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/q4SeZAQWYLCYLWaKJxvUTX/Pzc1GCY1Dfjus3zXnSoAt/aMXIX2mhjy81+54yAaWIoB78RXN0oi8o/y7aMrLLzgu4dKdGJEMshIWb4zOCwKQvJ/9/fs+vR9OdcaflfIlLfNFXwuMFv4fSVuy7/mA2C0QMBT/HgTICYNhNc1tPCFASzf43DvCRBqhkaVnRaRBSaBgJRWBdvxr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD4TGbHnafiHaWm8DizP+/Nstxz9SrP5zY99DcI8WI9CUw0dsZ2sXyJO/+EQ7edOxuQjBoWP9wHY+gT+aJxyA2YhpTIYnwbNGFpD8iKfwrWbJRkiTAvRe9TVQQzaXlUxKyehOa1m5lOTroX2DAcL1PsexzZJcgOFl7xwJYFVNL+BJ8MxblUxLYg3U0OBueD1kH7FPJLK04UBF5HNY3+JNHtg8f349gYbJY+2umH6Ok83Ikf/lwTFd7+GcC1pGnMUg0g2Ze0rElccyog7knpze9NE8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBM6PTWqeobq4U7dLcdGK6i1qd/ApbDU3WvXOmGfwHoSgk9mIBcm7bCVokQbOEt1+A2v80g8Zr+KRNL80sUp0FAzw9snXBBGMmHDUi6wMIRd+cKf2YK/ju8ldFPM8wqaMrPsi8SqysVgPVAY1o27za4nWv/EbcwSyM9LoOHcRIGr+cWbaZD0FKHOBeDZUdFFw6BV+Ax7aIeLkd6pOaBljf5i7I6GGqdrvjHZzRGd6GtF87LmDUSeyqTFGSJMC9F71NVBDNpeVTErJI5U/p6unMG+hfYMBwvU+x7HNklyA4WXvrEMfqc59qDvwzFuVTEtiDdTQ4G54PWQfJjVU9ES+oDjyZxYKBURojQsaQAev0uS6+WyXsChC9DxYP+sQptbcdk2d1agCXTTOEdp6FDMq6ErXIReNQuPJDOtV03unNDOOKfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DcAlI3Ez3IpK+ZQ1/5MXw1CZ4w+t0+He3nTImwHJ7ZySqPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1IIBC3K7GTUpLqjyGfAwYt4Py0oKU81RdX8PbrTe3V6wZ7eh2HbnUs1/NQJVUEn6UI2lJ5lGCQoKAhXczNIxWjwK2yYVbVkh62xzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0HrgAJSNxM9yKSvmUNf+TF8NQmeMPrdPh3t5aiF8Ar7vn06OiTgkaugYKd4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi30dEozqI1v9yJh7neTdlj69d7aN+aLCTFFFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNR64Bq2FrHKkV+iuZ4Dhc9tyz0sNGyBXA6A8V9KQ1+EfJ+sVUSECZefjiIpiZ6p1EcvXX/dwuuPsjO0u8CbOsYgBYBVZTCOV158lgcbcMmOlQlkbAQoVSobjE76CA8Slp9GeIg1Z+2FKoHYABLvAfLkZIkwL0XvU1TsjfDfYKuCpTyWoTITjLTrjE76CA8SlpHRKM6iNb/ciYe53k3ZY+vY6JOCRq6BgpTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3TJsspE8P3gggQlwxLJVWgpxHKNJuaMekEylcnk2SfISjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSv+UqT33hpFOBMPB19bh6NNxsSvrgDL55fobnVMKExTykv7s/DD0hG2OzOr2uFcX6NspVQqnuZ7/IZ9nVwCgOjNL/Yc8yHrZ8sc2SXIDhZe+1TK7PZnJfcd2XyajBJwiq8HGntDEqTFlvOB95Y5ZwVAgfP3tU6skO1Vq2fRvlrdqYcZTPVtB64ACUjcTPcikr5lDX/kxfDUKkQj+YfGcUcQXuuTYSohyzAXhrbRXIHs52pvkKgZ2fyX+8dJV+LEWUbzhEhRnM/jpYP+sQptbcdmS1i/SR1Bu0Kfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DfT/IBxhZryYunLCBPot9lgAqbV8jOL99G1b4QMXp0EjaPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1L8UmTR/6SCTz0rA5LLFlPFYq4vWWYA49eZZcy+1YxaOCAKadiA46InsKnEb0ga/Y9dGK1L/5guJXMzwY37XNomtfV0RUsrKxyxzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0HrgkE03EdAhG1qnBprLTZKlz9JjIdjhpvvi6mLoSPY7mciQONigHdOkUU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiH4u7l2iQCdOn2u1BofAFzpRdGC590q/+K/EDN4xza6l8QCRsdyCNR1g5lxsdPkSBPGi0Y8NCZMK1gYZ+qi4LPx2DklCmh6rIVtGsBJiER1SPW+0vQvtmRNKCB2KW/Zu+DO6wAIW5C6ypDaBZr2pcLZwaNhI6qkHl1nDDgJf5UmhOksIf2FNRG6ab4UvJrnSjWrrgbpdF7KHHWaW4ZqPZdn1S+/9PlBOosMVqoc7Z/fhA4RMhF19TiA2mM8aASrX7LYKGIFepbgdW74zjMlEd4z8Abnmq3Yxw149bucWYAKY4uUSkIfKmdGamqWTpT4W9PSnvK0JiRQ5vT+k5/dP71+lMLZX/BTrtC4B3lx+RufWOxIDwifWiUnZ1i9vJ9nzzrbvjiagOrbfaEjXtRFfQqMxTIFY3buzxWBI/izk5ohR7zB3tPBPSP1Vytwn+BWRGblObVYCA7MjEOuT0IkM2kjLUE125IHBp+WKqSufJrtuprMMgpYV+zaaZe7YrgzJ6UvVNzNyuGvr9aKlPMgEmmxKSHxp3YfcbEn2VGX0cdCQYqdxk8M/otNToKbj2STVpVdSZwHdj0W+V0Ki6e7W7AFkNHcmfg4YYPxLeOzOhh2G+pa2PAlCECHnDRDOC/gYqVI5/T9WQqnnaS8eRn3lQengLm12CnILuT1p/85gcwFWgE0OR5yw6G5sgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XtSGcH5S1UGF1o6BT+MZs87qeBVzW1jPXnmHjJv+Me7G4YwVMKEVPrn1AFQVBwpRVtd7RQ+wk66EcdEvpS0WY1b964REYsC43Zn/Hcrjz5ryjAjQglLRY6PJFsM/59YGqFvOB95Y5ZwVIjKTRLNmEupc9blp0C3DPvcD3rFKnZiawy4eDoLDc2ACNfVHYvReJ4fxX+83tKTAMMrbjhTuTWgQVu0p8aK+/WEWzEaIaTOrFYNjU84/cWAYPATjBoBGhpMZzpQry+L8eu3dqWQl5UADC+g1mYTzYNU1JRpuTnCj2T9pQASoa9BlBRQlgnE5b7VI9W03XD8R3ub8SGa4915CIQ1uDgy/Cfo+v9hbGojM6MH5NjrtTLbgtQufF/zJtoaMloj18U6uSDGEz6hUblRMs/kWsGPS4MPRmJ2CcEQNdkCqGqNk0F+JyWG8q3PSsYEXz8FK95tp5Kf11qf72zU0D95TZEMEX7qyuP0uR70n0crRWlq8xvrnKVpxlQO7HfqX7b6Hwx9D2H1+/JnAJz60JcS6a8qi/EQwJruWQtwEjx8jjeeed/IKQi5t3fr/tTShFH774xOWaAsTyEg8xIEOMK8pn4QnFs/0R6Tojz1XqcGmstNkqXP/1oSm8kcAgT+3bEU+j9L6aPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1JQS8X+QGrUAdpXISPwSUD/yCdKzBivz+nHfIkmjbysiTgTGuKxfjIPyj9mW07PGuSMiOeEcndlnJrtIWUhkqraas2ecKTkRlOxzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0HrgzNsJh9LZBjudiE1k4QaI360ESdkChgVRYhTEZ3C9yLlkWKS2XM+5HRSxEFrl65ODgXsme41y5hFk43NOvB6aVerK4/S5HvSfRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTI7BlN/FRYk9WEU2MO+k07LhqhkaVnRaRB4PAh4Y2nByk9tJYLiQePYyB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxPj2+zu9Ni/N54lKYMrm4xgMADU1A7AWc/jTxVjCcoCMNPnVL3P37Ap5u3eBKM6GfzTcyJ/Xx4SLiRWlvuz04O4hfaz11WUm7V1PA2FDJ41wmxNEvKmrDZyBODtlFqpfntkCqGqNk0F+mOg98oPOmS3V9ZcRtaANMste59tIBI4Le/q6VFI+CtciYteit/OkjTXF19OYlppsmOg98oPOmS2Zoa06Kp9L8fxPKlWh7DTJZdoseUxjp0ebMNt43nC/pPwY4gmgzIlD6Zxmv+4oCYNGcq0zG0zk9RFQRHGoGt3dICGi6jN5TSCweoFsHKRd7dCUMgSzEGXsZqYzMFFmTNhm3JC79OwQHbvD5lUjXu5XZxsRxpVB3Isu3DPThXWuY5eK/NyuQMzImCFq8Cylmu88aLRjw0JkwrWBhn6qLgs/HYOSUKaHqshW0awEmIRHVI9b7S9C+2ZE0oIHYpb9m74M7rAAhbkLrKkNoFmvalwtpPojX4fPa51hbCH2y4h5cuUF7GgnagJDDrPrDxaOtOSxVVTvwwIgP8dZpbhmo9l2fVL7/0+UE6iwxWqhztn9+EDhEyEXX1OIDaYzxoBKtfstgoYgV6luB1bvjOMyUR3jPwBueardjHDXj1u5xZgApji5RKQh8qZ0ZqapZOlPhb1AAs4fpH+AVptg/5B2bdChhx9FYHFRA5C16FpiIaIXFI7EgPCJ9aJSdnWL28n2fPN7PavSVrqlk2ec+rMsnWw+hATJnPhbRHFYEj+LOTmiFBu9qMX2hUyRTSsXM0J6OZR/eSCCtRGpurGb1OoGohWT9/c01oBw4T7I5mvU4olVv5pMBjvhhLUOlV5rcq/e9NPHBvS5Q7cG9/e+XOPhHzkFbw0wzf+Kidh8TMryo9i3ho4WGkyjlVezrfDIDIkFdfie45nsSsHXdT6yJy2GCvBZgrfs/ix0rXYXCLZ1sNyKfgKI6wSkpWNi9/3aZVi10or+3IRXQoXZKCB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxEHzUmytZWOF54lKYMrm4xjuSdRQK0EBERNQnxcB2gSEpt2XV7LNbqcEcGi2tsUaeaZXv8xjqcVeiqMHA6nsCCYOwkZYjCXSdKpzccUWyHeQ7a9Q2UDgeYCgw+O3qf2W4vOY9cG90c8p1jMpTvWYCBdII4bD/DxHih4lICI8NOfL7hzvcFGZsOLdWUL+Oap3zQMVU1A5LKmPfL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gqSkSIHPvB22CgYcP3ClfHGT+ZGq/zgnrIGHxQNfjwKsD+cJKqW1sBvoaUNyV0DpfrjJf6nGYW3MDPz8tVjz9+n9r8gVAfPV8pNL3EdnMFxdE3q+TLy8xV0ZOlqeL2FRkXv6ulRSPgrXjFWfo9TGP5qAuliy6A96WLuqlaRIkoD3AC2UILU2AqAFoquVKKNNIp3xnhoEfZm6Z/NNsXl20yr/1WLGtfaNerrZVsfc5xHlizayUwj9adsC7LTbGEU7YFsX8L136z2ZJ3ixhI8hQx86fZC7IZHhPHc6vGQ+DeaZppl7tiuDMnrFPnUJwhBLvgqMBrNwdCaZPFWXtQoy/CdlXdP9mv5Q45UzGcpegi5hLSKA7ZHdF3b4osJrPtydycnBbQAF0MqySJgYszMi4cAxg0Q4lRRxDMUIj0kBvCtWwOLGUb69HfX3ts8BfzCRly3/t0ofeWHUVFZJqzRp5l+In8N4h9CT3DxpgkabZx+YGuomKU+I3J+FIEQ04JDVXLeEoF2schcWkQyHW9Ihgc2R7f5QhIPXMZ8DOdNvP07D2p7bG3MWIUq3KgLVRgVJHcJQvaskCzfRkC7Zw+OydHe9eewUpZCxMOTXPgG24A7lBY8na3Zq1dFysMyWi8Dp79pP8nusfSAcKM6UyHXvwXZxbbYVvNKT/T5OmiZJ4spRv7jLazLQgA9A7x+uZOjXbjdcSOcu9Krci3yL6Dk/nh/b19DqZiCLXMi5M1r9XCIIn5PvJzE22OCoz3Cv4jzD7IM4BZrRBWENFGTojumZq5JltSbcjmiysxrVF+46ntYsJSDMSlor33v+IXMttmU8CRZTgSGvool9CsqXxXzu0gyoVizm/P0OhwONKjFiOWlQaUReKW7Fcv3wnFtzlCFDlTNQ4SkvOTDniHvhuV3urHg8OU3xIo44UOUdg/6yQJ6EVdSZwHdj0W+V0Ki6e7W7AMGc6nCiLJmzKTsDvD1DC50/3YZ+iB3Q/PqXjpTWrOJQ+B8f10Rt6KtaqT3vnuglKu0XawKT83UGaWZwxI/96Mt8v/3KD1bCgSDVt7fZoJ45/TMwmsob7anOvvv6H1tVOmL5WBPAXb2CW1dvJwdxoZkKBhw/cKV8cZP5kar/OCesxmun94HtfFWMY37gTqA65JTy0fmf0khQl7pghjm6Y/h6Je+BnOEgk/cfcK6iyFnSp0PTCkHrSUNSRCjtEfoZpB0Qy0+80Rdx04rLte2XB9x6InTkY/F14mLj/I2n5zDmVZ9fi1pHYSK2LPPXEz0iJ6Nq6a26YOOn6Ps+3bMGrHs3R0aELRu5b9IG6pHc2TdQErArRI5DzkC8F0MegJ6vYtKzFc8MRZHVZH8hTEatrHbP7R7X4S+7h7R5NJCJ2FplVT+FGBHADL2AGRTXRNTblvragoaR8R3xzI9PhNiPBtWujrNq54Q9lIWAITOWaBSfWKzwBv8Fi4HzL6LAQd5XPAg00z2J2FaEAC2UILU2AqBjifhpIobQMVtjyCRaNLRzBTri5ZThURWC1C58X/Mm2kuzegsupW9KlKgRbsAeirmCNDkmjeeYsPu4G1X2P/HPMWz2io46pSRm+bPliwGRP8UBNWXSm6/XzpIgVNzR8VJbiAMvmLGBY72e388HN9taO7Wp06DyyuosH/rERXQsD8vNXX235NKTrMf135XxNWxCIl308aDNDWdZXjqecilng2DqgKQ7dHSMLtqSv6ISXrslAXrHRsJBIHswlIIAjTM/Dk2Cop1CwTaPUaBWaWYv3nZ7x3JkDF20Oy+ZC8yvn9cc04P4MDHE+Pb7O702L83niUpgyubjGFrD8nhSLdW2yM9jNjufxTeDE9G2hhXlj8OG101ufi9V5Nx2xVOsMfWs03XtKaE6dHE3iYlVE12LslgYG7vG4MBdQi5DON661lvaY/glBxXy2QKoao2TQX6Y6D3yg86ZLR3SFTv+rRJ3y17n20gEjgt7+rpUUj4K14FIOePcpVBMNcXX05iWmmyY6D3yg86ZLbgW48RTCOHOB383Jx0dhlC1fcYQ1lKEOaNq6a26YOOnRei0FLdAN3Nfn5IS8t3wIPjtYeJA2vikpSBMhyzuIbEgIaLqM3lNILB6gWwcpF3t1tKeLTqRbG5i4/yNp+cw5qa2/d51TcEbjF28JhAwjt1JEogVASSpTw0zIhTR13AjN0dGhC0buW/SBuqR3Nk3UBKwK0SOQ85AvBdDHoCer2LSsxXPDEWR1WR/IUxGrax2z+0e1+Evu4e0eTSQidhaZf9H8Qa3H6W7q+yZpV7efG69j9PZL1xgqwApQOf4KD3jWiqxgM3M+yKtWozI4894qf4WzWt7bpydZxqWwa2l20U/3OvyWg9XPgAtlCC1NgKgY4n4aSKG0DFbY8gkWjS0cwU64uWU4VEVgtQufF/zJtpLs3oLLqVvSpSoEW7AHoq5gjQ5Jo3nmLBae336gdyC04xdvCYQMI7dSRKIFQEkqU9ltsK8q+gszumcZr/uKAmDRnKtMxtM5PURUERxqBrd3SAhouozeU0gsHqBbBykXe3QlDIEsxBl7GamMzBRZkzYoRYVX1S9QvojVIzmmTtaTWcbEcaVQdyLR9cljJoPRGe+4XZmQ7kIkCcBHe5njD0UxQiPSQG8K1bA4sZRvr0d9fe2zwF/MJGXLf+3Sh95YdRUVkmrNGnmX4ifw3iH0JPcPGmCRptnH5ga6iYpT4jcn4UgRDTgkNVcaZMVhSl40J3xeZD7w/S2sikyQxUhfxMDnwM5028/TsPantsbcxYhSrcqAtVGBUkdwlC9qyQLN9GQLtnD47J0d7157BSlkLEw5Nc+AbbgDuUFjydrdmrV0XKwzJaLwOnv2k/ye6x9IBwozpTIde/BdqAMBwI521YY9rK6g8gMpK19K0P7cPIDUg76UygHBZf0CYXrqfC6J5U7i+5tvvDrnSo3TQoWr326SHj5LyeNflMwYhWpoTO6vPj1uWo6WWxXAdzA8ouBb67hr/lz44wUMY2FtzJyVAr14xBQF5gOmiNGMsjlTCxBjrClYw8G3BhItVKrqJkIvZKE7dGAD5Y1Gv1oqU8yASabEpIfGndh9xsSfZUZfRx0JBip3GTwz+i04vXYp7do25z1S3uUtHicZ/AIwKktSU4G2k577kWcuE/iHzLIPTkbQlkp7cdmNe/7LQJBuz30tNBA2Mpztr4rO4Sd8CEd7hRKmLo3EpKpYOUsFEue7q/oK35/mPkMqOdT09SD/ytFFLG6uywc8e2MB2v80g8Zr+KRNL80sUp0FAzw9snXBBGMmHDUi6wMIRd+cKf2YK/ju8l6ZCH1ZWldPvsi8SqysVgPJxHnIqZaXLZp8N9lmx6APSNawiyRNfW6Oo3+g4dejIPqhX9bIpaBwGDyC2qmT3s3IhNefYc1Ds9Qa0wefbzJKXERIdJpAsmEp7sSTVvg/uXeNQqzc8Wt++5U7yMHRD6ldYrs8Vbz2Df0hvaei9LjUnFzboBbn9kh/1oSm8kcAgT+3bEU+j9L6aPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1KUpoYcMOHWLuzAVGHWpyRZHFsEx7tSpsDOxSckVRUj9utHvAUyDje5yXhe9y+yf4/dzHYSBeB2EgVsqQ8MnTvoQSYNUbOjBq2xzZJcgOFl77VMrs9mcl9xn7hPXHEyL7YMjfDnC3CWiG84H3ljlnBUCB8/e1TqyQ4scUcYz1p9w5hxlM9W0Hrg9Ib2novS41Jxc26AW5/ZIf9aEpvJHAIE+kuUzj4Rljcp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYNy0sd59HH0K2bzhEhRnM/joo4Q6TfQ13ZgdlRAJ63gjOUpUpniZKsU9Fg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNcvcDcSR/CxBR2ImZki5S5huMgCvF264/4Gxq0UqthSajdfLuq8OxoW4qivQv0gD62iXnMGWmpaScSsxMEoJT4PuzXfAJO5KFgblsGnqDs4dQlkbAQoVSobjE76CA8Slp9GeIg1Z+2FKoHYABLvAfLkZIkwL0XvU1TsjfDfYKuCpTyWoTITjLTrjE76CA8SlpM1DhKS85MOfo/7S6f/tBjG84RIUZzP46KOEOk30Nd2YW8UQejRK6j8041kOD4SkWGzvYKqVYboeDWqgJJyWLBaJ6naaXKCeW3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q76hLYembFc1UfGp9S2aLfb1uwGRRf2sPY4AnWldQDi9r5r6wtCnFjEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E3q0VP9bGZvn6P3vSg/sWuEe0fVE2UfRDwOBzJqNxLEMYsiiRJGT+tp9pMu6GF0ErlTSUhpXvudToMo6h7bXJLPoY5ewF4UAYA8TSGyAAyK0FCWRsBChVKhuMTvoIDxKWn0Z4iDVn7YUqgdgAEu8B8uRkiTAvRe9TVOyN8N9gq4KlPJahMhOMtOuMTvoIDxKWkzUOEpLzkw5yZjiqgLLPAkLJSymkIQdnZfrAdG0GL/FYsKzgH7H1GdEn35CfhW+r7TpvfhwgPTOpsMTL86p2h+Kfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DcbO5LQi/IoxdCJ7eBTsEhoPfvKxEnQJJHqzRat7R3G0aPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1InjlMthGQvNd9N9J53w24FZZWG0aev5UmI5xHRYyO/malXM92lA1NVJtNJVXB520uf+q4KYofrP2nzyPMWBewJdvZ/QaCiJgmxzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0HrgT9CnPeeHlEuVem17LlsMuv4WFYOlfeb/E9xxQtUamkii5SuquKEKHFg/6xCm1tx2ZgQfSSokdhwSffkJ+Fb6vt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi31wFPXJKcRlYnHxpHS2h7QSa+a+sLQpxYxFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNWxEpddHatJ4sFlkeKv4qNh1Khgikxrl2zcTT0jYlpKLQuU7qSqt4dviO7qXG/hs6pac/T2T2zbmHKTPn1TRyFPdNpSZJx5m38/ODSd3SE8VQlkbAQoVSobjE76CA8Slp9GeIg1Z+2FKoHYABLvAfLkZIkwL0XvU1TsjfDfYKuCpTyWoTITjLTrjE76CA8SlpM1DhKS85MOeCc5d1ORhcEcNZFO9TsF4pWD/rEKbW3HZmBB9JKiR2HBJ9+Qn4Vvq+3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q2viBNWH6mIbBrSu5KUNxndFbxWvhEI6Xc4FhFeF4INKED8GRMBkRfaaghibMRwXTAE5usM/+uf5m3E0eaUfB4rVACI3dMv4QlSFTvaKY1w46BxMRqnC7FzWvTAi5BzWi38GDA8mb3znfUqDJPw9+AaO1QOiQyS3wjUHxXc58gtc32nVXdPeEywMRaI/GdnRfBbFvMD1/rw5H8L29ERyHZwqIAytcSU6VeGGpRqZwC0tvShXmVoOhfnZmArq3ulz5adMTxiO9ZJUCOL1jcRSLK2Xd0YN7Rm07ZhtQfj763gjmqaqoqRz+rJ3dZ6CFuELvyUL1F4ALPTx+t5MzFZlb33r0F2yM8XlFVHd+wNaZRIoOdK0a8J6VtNSNncG4S7dp+ShPDvIKldUp7w7fOSvYnapu7yXDOjG7Z4Ha2ohMSsRWrJNVrqDcLDiCHs9LQh1eAzILY8YxPlf9P/xBeL6XKU88HzaHj2UOyNsP+MlWzBfSenr4C0CvCXl54lx3iOKCeW6+jCTQNqoATm6wz/65/uEEIJLn6kffYqiX2d4i1LPX1ZwQzGpc4d/BJtGCKmtjGC+vDPTTUPHGI0Z8FCt5dj0NXU+7cWoiorcUtt7LNoERnt4SzWwjXYuOYscossBQsCQWtZmhnHgEywYC28tb5yk7A7w9QwudJd1pU/gl3mf0tRdPuLxpfg8I+98m0lr+EnyROhHPnVER0Ie5xZR3hfd8NmLi116uYO1dt/Sfdn0iNoUF9+C7IzdHRoQtG7lv0gbqkdzZN1ASsCtEjkPOQLwXQx6Anq9i0rMVzwxFkdXk8yB0TZL/1M/tHtfhL7uHtHk0kInYWmW71zKIy6gz5JAVLwxFtUQOVHlR4J1KBMqVyfIbzpk2oKT2f6KHylLIU3di+2FbTbGreXbFZqRDwZRicStX8xQi3QWAOejTr4Ni4/yNp+cw5hoJU9LHJxATXrwDd8Wy+uOy6ZgCdqo1foc3CGnI0Xoy/+CpT+6JLtO7qpWkSJKA9x/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYBg8BOMGgEaGkxnOlCvL4vx67d2pZCXlQBLSSAa4NrepOjEIHUZKfwJ+LhntYC490IWyIjDTmaujRdxPJz8RX8FTHYmzT5gc4onCtrvxIsF4djCc6swaDbCEJgpevAFpfuC1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVFA2P7B41XreQ9GYnYJwRA12QKoao2TQX4Mko69gphyYgRfPwUr3m2nIMYTPqFRuVGHNwhpyNF6MoJxu2RmqG5ySZCpp55DBgL9WcYdag5ofBTTFqIsytojz53d8ChZDcbNLpRUbhGJEzHIKOVLWXIbuBbjxFMI4c7u+PppzirYgwSpTFK06DQedzq8ZD4N5pmmmXu2K4MyesU+dQnCEEu+CowGs3B0JpkmfCglxq20m2Vd0/2a/lDjlTMZyl6CLmGJCIGghiJ1JHnxEVzZGWN53nYZZqGddlJbSSu5gOPPi5/5x8fvTgPS36xTV8UwmMbBKRLdegg5+uoKMMmKDUe0q8nr/zENJCAZe0Dcu2bPTMKeih8p/hsKEUAxsgBEnyZzcLJ6bUgIDLrPr6elamL9orgUV65OEhQbKdakOJ9r1wKpzvW/VX7/DzXHnUK1MVBYiP7ZBns4m2pUJRP0tlv+zuYH/hJJG9CtfxJshuw8hQln0NIVILvMrEfrgwda4XAkxIWmiDjdn4wXw4zM2IcDvWnCdO7Ipp87BsbKEfTUFVapqhhZvs7Ii3o5HjzJcZz7uubQ3eaoTot8i+g5P54fu/FFvHlFHImBIVU7lNMpBGt3YI/x+n/HWq9/38e3uwWDOAWa0QVhDTH8tFwmYuLJOOEl2j8NPUjCVjmqtMGsTsjftgPQL4dWvFncUDSODwp+oSwdjhRqvRe4yVqnTHYIw+ue9yvw9UHX2Q4kLLCMRGfUwWOLpcSIvWlLWktuAWLUEb/KB9aAZRKSHxp3YfcbJAhQaEGKKRbIsLGMqMweJYKpOpSkyVtpjhYaTKOVV7ORf9aCM/1Rk4KpOpSkyVtp2hGc61zk00AzOEjMYCR2oUb1LG1+JIvSPKIlZPPaa/2VeXHv2IThCAbTks7I470oSZ1rQoRxNjWjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtNZudufbPyH0V7D2xokKOOiuz5jDYc5dSNVTR0UeOhBVtLETDlaXIuzpilnbHqvZ4C/XCOoE8hOF5f3/YYYBqNLmFIWTB7YBjMnOZhBPOrx5DrK9UavEcJ1gX1OjBT5G/dYrs8Vbz2DdRgwXjDY3na6AsTyEg8xIEJfrmkpX3MygBI3yy45NWBaxy4F4LsXauLqHXc6/S3hJ9jrrb8qv7FCewek5BSC7Wa/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA/TWOK8LhctYgeLhT49SnMP9gdYNIzTwAibCPomlKrwv6kPagaZnta/FYE547ZspuCT4rTgEw76/pInOd1RyqALmnNz6iNdxR4dF59YgMm+D0ZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB9jvcu/z/9VaBM8p+5v4rTcASN8suOTVgWscuBeC7F2ri6h13Ov0t4SgXsme41y5hFk43NOvB6aVerK4/S5HvSfRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTIkBwTlD6wWsHDZsV9AUXP6VCwP5LsM0OTT/g9q3QirWkmDOgEXFZLuJsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XuMXwXz9GrP0mB4jH49Ofj8qeBVzW1jPXnmoyLu8up1oYcu1Qr3rfo3i8CggwAVUrZKrv/gzXnQS8NftNdtpYUIwd4P7mxgbkSDsT4yO59Pb/lImsmTm8/pU2YtNWb2tYhvOB95Y5ZwVCa848e5P9TRhOvQ6oF1wAbuYdpcZKf1b/Pzg0nd0hPFW91IA6Y7GeBie71niGiqBY4TSegCMXAaPEiO4D5IU2b7F/BSKuxqlLNffVbydOPOUvaGR0+14vmv66OI9ELa9Io9ZURvuJ1HVO2wzdGQeIYMcvmtK5p7jdC8gII/zxKv0oRR+++MTlmgLE8hIPMSBCX65pKV9zMoDF8LjwZWht7x2AVe0r2XA/7p9VBCdFg2myB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eTkzh7PF1eUOFMr57GPQNuSvCwBu3EqC/uf2N/Om7H9yrYh+WhmTOtazlr9po1ROL0F2A4XbWmM0YeLmj4lNnhAwTFIRUlEAGm84H3ljlnBUJrzjx7k/1NGE69DqgXXABu5h2lxkp/Vv8/ODSd3SE8Vb3UgDpjsZ4GJ7vWeIaKoFjhNJ6AIxcBo8SI7gPkhTZgxfC48GVobeSb24uoOu5hDrMNUehHLf4fDTgSB5WkBU7Ly1LUN2vj5YP+sQptbcdqzLG7lzxMInnURB727aU+PeGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9zcmcFw6NVApSHDh1+GdW+Xe2jfmiwkxRRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTTBOuxmvIXnKG2OyNbFcwuThNDWitJhLtRFI0Mh7J3HnTg/LXeRs0hdJiz970vyG44TfY2InoKB+ILM1zNXDRdMTFkQSccjC4nhoFfWo+yDyUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaSgMIbC+dTC1TTlAunw3fVDcIrQ+wP2BPVg/6xCm1tx2cp1LXHyipTfFMpBpjHbdbt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNNa+BeEiZBAD2Xqcj9rgZill6QI1AQTykx7faPpPRnQ9pv3JoBCo6uEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E24TF4yIF5aOtbs5BltboW1CgybrQRGWkWludMQzBo3vmXXvCE6iA1qTkXeIBD8yjS3Yv4o598Vo9WaQ5QSSQagXTx7vWRFwUcYULxy51eG5lCWRsBChVKhuMTvoIDxKWmUEYwvfh2RB6gdgAEu8B8uRkiTAvRe9TWjj/MBYlINxVPJahMhOMtOuMTvoIDxKWlZekCNQEE8pGObfmMN03117Ly1LUN2vj5GwhXJkqxL8S6eO0u2uS5wjok4JGroGClNB5F4768yNcWMLegeEu2xIXPy7rBeiKftIYxPN43A7cuPtYdER6FwKfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2De9zCHcaY96YIfXrAnZ3RNwP5AlQOHW8/Kv66OI9ELa9LgyzYCKh3fORYPpI6Iy+GG8Wa5S6lg0pUZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB/ZdpXCHqrf6p+1tzgFqdqCj8BzDTJ9B2ZN/FQ5EkVd841THnLjDMjnxm4qu9OkkwMoXSTuB6bRLLYKzTDj0IRoNOk7P8m5J7Qn46WVexlu0eqLJ6+ft82bqM+548w0f/VsWMPSGI/A7fwkmZKzltrGlaCFnNeJISLvtzJrFP2grEkuF1pY+JMnBgUkDfsw5/swuvAsWVENDtJvjvbMgLcAQfgjxwhQ4Y3ob4+e+ufSlPybLkgVKsj2AFy3JCeqOrVcK4TsFwhTmPaNAd9KsH1L9ElpcI0zoSo33AoEOZ1sHxgDIxMgONBBFdIxFGc6W78g5GWeijAX0+EBwyxaUUjf/ZFm5506QLLohIRx9l3XU1XXJz4XfkI4+ShPDvIKldX8V9k7ALSC/kFAMFuj/L+zlZw3/ZxUyOstLHefRx9Ctl53+nxujJAbWD/rEKbW3HYBwWBGMlIn504MEoWVeshr/0pxKrD9wj3gW66AR6t/DxVQPbguHu+omkwGO+GEtQ4JxflfBemn00G/cHQkAW55M+1rwrpAbXJvDTDN/4qJ2PC2UB7ve5Dlh/IZx2p/9SxGt8/4VgCkI4uOYscossBQUFoPtuxI03XwABZMjuDp4UQ3iF3RKnIwhI4JJBWOdzRaqT3vnuglKjZQRpnDkOZFptC+OoxennB8v/3KD1bCgSDVt7fZoJ45/TMwmsob7anOvvv6H1tVOmL5WBPAXb2CW1dvJwdxoZkKBhw/cKV8cZP5kar/OCesXdnmvLlJ3WwC6EJ27bFrW0TJPjK3RqX/VM0EghchJRCAwr2UnJsdqIRHs+7kcsluzRJFFxVLnqSQH9w0Z+8yh+VDcPH56TUP04rLte2XB9x6InTkY/F14mLj/I2n5zDmFcOAz9fMADT6l46U1qziUPgfH9dEbeirH8V/vN7SkwCfijUTB5aS+dkCqGqNk0F+mOg98oPOmS06Gd7CHfkcQcte59tIBI4Le/q6VFI+CtfS+Uor/LoSyTXF19OYlppsmOg98oPOmS3NFBrVyN/CJJv/M9NQs97Kjlunim2ak82L75sk1UWdGjD+tpSX9FDqSObAGytURyNtLWj8kguV1Z8cQUi0dK7XvfpkawUOoXTNBv5s9XuQQctpqp+xmT8gzWa2/be89Wy8AAkEUDMV9tQl7jmSYt/A0i6aAZEbfyXNGS0CaRKv9pQxL3AFWr/9kg1afwE2aisIcSmvBB071QbWdoBgkdomM+BvB/zO52NllJU5cTF70S8LReyCY0mHsCy6v+fSx9DnoxszHRbJDY3/jJXs0x5EZrEzYuIKL5SqFp5X2Seo9AyOcecRlzTM5eIEHyfb3lznirqY2MyK65A6tLGeZpw11RqTGezje6iNkFAJHpLFV/ae+rSAlGSMEYKIFoVr37WLfIvoOT+eH9okh0yqZU8ReJmRsNWHZ34wS32bGXEBibO8JYJ5itJmg82S+uTNtyoQbJEcaO/geyWVrtBJJfMAXf+bCWBeTMFuQs0vr6yhgxkHYbd8Nh64Z9TBY4ulxIi9aUtaS24BYh4lICI8NOfLHA2P0Kk9JeskCFBoQYopFhw6o0RKnKbOnuOZ7ErB13VYR7XQQ87aDZQHMZdXAPdrOf1M2EbEYiItAkG7PfS00DcUn+OzGBYhPppJAOGc6rjOjrvk6xsP/fUvOnWeMvC9Q/FJrDdAJ+ubIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17UhnB+UtVBhdaOgU/jGbPO6ngVc1tYz152I39kYwmTKkQxYB1p8GfMT4OXwy04gq0UdN6zCOqxLjsafyKvlhXpd+Ckx/wrpybYck1bCTO1USRnkOWNApvGBuXwd1mZ2zIbzgfeWOWcFSIyk0SzZhLqXPW5adAtwz7VHxqfUtmi30UsRBa5euTgyVwHgvkAx+OmzW5lYfvaaRGLZYJmhT+LiGqoiII++HSb+nPj4vAM+pr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD7WftQpDcJDi4XXV0R2ASvs0Twt0i20JpZ1hLFZqqT0ofniROo/FpFAoUy/3G0CT6wW5XTiybkOryt/lQbJ/5dAm8SOTTOAwnFtCpI3UIEX7RkiTAvRe9TVQQzaXlUxKyeysdxJinHmMoX2DAcL1PsexzZJcgOFl7z9SkDKE4V0L8MxblUxLYg3U0OBueD1kH2O9y7/P/1VoEzyn7m/itNy9hNNbIKcolUv2nwTAeDFyhFNjDvpNOy4aoZGlZ0WkQZVVKXX7+Ysg+hbKNo0rKCQYwOnZKP4faUj28UnRjBsXkbMdgRD2PdvPWgngoowu/1+GhbIMbF6zn7W3OAWp2oI7mcjzJ7q17U38VDkSRV3zjVMecuMMyOfIM9UGxjQpti4oUq+4+1/z2oUhBmHBC9zvdem/VpmX13pQwo7YJE4jRGzbs7xwZ/BPbj3mDKsFfF6+QF/kgae6pqh1ZHDvWzB3nyLVAEFu+CG8wIBk5+ff+VSkZmB3SSS76g/3wE/djRRv3cmR7J+28x/iwI60cXVTA16kFvI4EwKpzvW/VX7/DzXHnUK1MVBYiP7ZBns4m2pUJRP0tlv+zuYH/hJJG9CtfxJshuw8hQln0NIVILvMrEfrgwda4XAkxIWmiDjdn4wXw4zM2IcDvWnCdO7Ipp8bL5DDa42ovoBCZhDxxHS1nvFQ78jN7ayEMasBGl5D1SZeFyBjILjdrTkXAA7clOe9x7PwKcWSuALCAhmL/nDFMe7RuXoroIezvCWCeYrSZkUtL3p9/9lciInM1RnZeYkOhiZnBfq7sQiJtvJEOfTysKVjDwbcGEi1UquomQi9koTt0YAPljUa/WipTzIBJptwi+mkUKYpHGxb0jM0iSP1GKncZPDP6LTU6Cm49kk1aVXUmcB3Y9FvldCounu1uwBZDR3Jn4OGGD8S3jszoYdhTkJiqcP/mHhmyqi9OoqUskp+IHMY8X4vfn+Y+Qyo51MTvhVrF2gosiewek5BSC7Wa/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yXpkIfVlaV0++yLxKrKxWA/TWOK8LhctYpdjUPiJnNYOE6grAsMSU+8fX0ANLEQyxWdJ8LMCRXKp7D0hXi+CaUmUC9Vv57R/9vbDkTntCBYx5p0zfxRGG+NdaKC0vdxAu941CrNzxa377lTvIwdEPqV1iuzxVvPYN+4BdMj3fv7HwGwCeFLiwZJYP+sQptbcdlEc0Ic0VNvZo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUslHkdbWDC1u0fh3icEagXuR52qygonY7yUk7Ta6X1ih+jIlq+AL4/ug2JDXKhZHMt1nWy0nJyQQvSgKweGJmlwuF4tjVW95kLHNklyA4WXvtUyuz2ZyX3GjAt2e1JtQA0lea1orJaxWbzgfeWOWcFQIHz97VOrJDgQHkWXBFWntmHGUz1bQeuB8/vy7HPSSLQwWWUwF1vDckQEKEmrr+U3afDwl03PC4I6JOCRq6BgpTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3XGik8FI735XqQLOmzW60PQKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSAshllsthbzS0+amFUWuRzWW5I5jm8riDrOMRzovLWaiGbEnZSejrf9KQkLBlqRgP8kG6axAOzXRXkU6WTfq3AlheEa+ekmubsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64H3UAZQVmw/aQ/UNCohhPjUbTGUccE7N9Fx2ZS6aADDB4/sH8n1rqhKg9J1At087JdytzbFboJh4jok4JGroGClNB5F4768yNSyznlsNfmhHxTKQaYx23W7eGQbQZfEiq8E01ntFGRdscuRO4/J4Dura+IE1YfqYhsGtK7kpQ3Gdr2eu6b6uhxJzgWEV4Xgg0oKmxowdY0pOSzylmXhpdQP/SnEqsP3CPSZQ++cZU70/tUAIjd0y/hCVIVO9opjXDjoHExGqcLsXNa9MCLkHNaLfwYMDyZvfOd9SoMk/D34Bo7VA6JDJLfCNQfFdznyC1zfadVd094TLSGrDktyqwbNONN/pQUn55v/pW52It3OuTlfZylpGAL5llJU5cTF70S8LReyCY0mHsCy6v+fSx9DnoxszHRbJDY3/jJXs0x5EZrEzYuIKL5SqFp5X2Seo9AyOcecRlzTM5eIEHyfb3lznirqY2MyK67lEEkdT3JO849BKuL80YGPu+EreTBY8WxnLrBOzI7AI6Oxyz1C60947i+5tvvDrnSNO02tvGQkY1Fh4dYOaC3EwYhWpoTO6vPj1uWo6WWxX5ors4Rnn5n0W27Mw1d5nf0wRD0dbwLnUQtVMA5RwOX/IHeiYbDgP2dRYeHWDmgtxZ9TBY4ulxIi9aUtaS24BYh4lICI8NOfLHA2P0Kk9JeskCFBoQYopFua539tz9Wz9+vl8EUn5Q28D5tNBJvcbwzm+rN6vvGFE2hGc61zk00AzOEjMYCR2oUb1LG1+JIvSPKIlZPPaa/2VeXHv2IThCGKEVo/jVE2N+pf/h6KXd2WjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtNZudufbPyH0V7D2xokKOOiuz5jDYc5dS0PxMkQ8xCDDbfVEgMjYIJw5EGgNJaY4lXGRXeDuQgizCKjHd3WDVgoZpohuita0zHfa5bCgZlJF9btygOtRxIABRgvviJ6HZdYrs8Vbz2DdRgwXjDY3na6AsTyEg8xIEOMK8pn4QnFvWevkCbS7e+PHYBV7SvZcD/un1UEJ0WDabIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15BAAo/pdcB8k7W7Vso9yhkYBc8u52PxEXJBEYJORjwrrkyB95il99VebmwYvOK4lW+k/1m3QAKyIitpnxispRNY1WsQAk+c6obzgfeWOWcFQmvOPHuT/U0YTr0OqBdcAG7mHaXGSn9W/z84NJ3dITxVvdSAOmOxngYnu9Z4hoqgWOE0noAjFwGqNycSrBQyqF1nr5Am0u3viSvlLdYNOfgTNQ4SkvOTDn2fJUnpdEPgW+DhIK6tvVvJgu1iY4Ccbir+ujiPRC2vQgsdAj5ThOJKIO5J6c3vTRPHyON55538gpCLm3d+v+1NKEUfvvjE5ZoCxPISDzEgQ4wrymfhCcW5Q0nQnZAKeFT/g9q3QirWkmDOgEXFZLuJsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XuMXwXz9GrP0mB4jH49Ofj8qeBVzW1jPXkFv1YVDJH+Svn52yjLaqms/u9ilFD23zfL5jAI3EdZEvLAewF2F3pRJk+RlEg4X2p0XTPKX3fEZOLj08ASLu0Q97+BEr7UgrFvOB95Y5ZwVCa848e5P9TRhOvQ6oF1wAbuYdpcZKf1b/Pzg0nd0hPFW91IA6Y7GeBie71niGiqBY4TSegCMXAaPEiO4D5IU2YO2bPbYoBeN+JfH+rsfUn6haepn5WzOBAHK2OIODQP046JOCRq6BgpTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3FXZj/LldvB8g+o3tn1a0Alg/6xCm1tx2URzQhzRU29mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dS+WcfMlZcC9VXkglA4YJQsX8x6jDhlUp2XufcsJ5lluD18ZYgnYg/08zwP2Ll/O1XqN8uiiDBZRUszC1Na9+S0ItEH+eyAMdDsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64LcMvb/1mt/fMok1UYWdJlXOJtsbCe+hblXulYa/wlyMjok4JGroGCneGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9fXhapz1sJvcHHkk3vKueOWvmvrC0KcWMRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTbHQl8/N8uCA+1GmFIAE+YcG3dcZyDnEPwlGdI2aTgRtIyMkf7gfaOWB7Ry7FbQY4dt4gXY/uj3Izlu//3p2iUDPj/bFjqU1bJYfpLqhbGFQUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaSwBYRRZjIQ2ReI/k31RTAxhVzap2mtb9tgl54JjplQZldeBfvDb9HGOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiH4u7l2iQCdOn2u1BofAFzsvKU12jfMTfK/EDN4xza6nWVTj4lFC99XSAYH87e9P7SS2ZEg8inGXmzq0ZKX4gLLYKzTDj0IRoNOk7P8m5J7Qn46WVexlu0eqLJ6+ft82bqM+548w0f/VsWMPSGI/A7fwkmZKzltrGlaCFnNeJISLmWemb7PGpjS2xzqlHKuxyjlyvAqRbklmXA47Iyh23XPe90FNWdvNNQfgjxwhQ4Y3ob4+e+ufSlPybLkgVKsj2AFy3JCeqOrVcK4TsFwhTmPaNAd9KsH1L9ElpcI0zoSo33AoEOZ1sHxgDIxMgONBBFdIxFGc6W78g5GWeijAX0xNZLxkQ8J468MMPbD7MWb83P5vbQF8rf8TL/Aju4VAN8SlPs8Rr2EhYJM4Lm4p+gex/CL7TfAX8V5sDA1QEVmwFRlwrdn/95nrrjx7iYZNj9B+vCqlzoqOwlSB/G2ZiS+O3VaxA+WVBL5zLmyMdCOemyDxwsHGYOvOKV3xuZFv6lAKfJkfVhR7wnFtzlCFDlcZq2n1MWw24nbC6+yP3Fnfn5LwGZ83frdPSHXd+guwWmEpOU8afRIdIBi21G0XJ+0wa2P/kN6PCPrInLYYK8Fl4ssPaPfhLD0UOXkfoHEw4EnyROhHPnVER0Ie5xZR3hfd8NmLi116usqHMtUgVlTj1p8j0ZcWdJTdHRoQtG7lv0gbqkdzZN1ASsCtEjkPOQLwXQx6Anq9i0rMVzwxFkdXk8yB0TZL/1M/tHtfhL7uHtHk0kInYWmVciQ1+N/+F6oLwc7gNzqeVzjCbb+Fc/tSpza/AW7C56OvSeSsyC3lrmV4OAyefsX//u730Pxs0lmphuQiZTdSPvo7fz+uVjg5i4/yNp+cw5hoJU9LHJxATXrwDd8Wy+uOy6ZgCdqo1frU8Y55GNSSjmhlYgBjT+MaBG+Z8HPQ6YR/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYBg8BOMGgEaGkxnOlCvL4vx67d2pZCXlQAxsBVWLcOZpXETwSwl7N8AktaXwiWb6AL3mgyXva9FpEhHi+T6TBa8d6Lem/bLZj2ego03uUxkeuWHoTHLK2+BeRueLciXSYuC1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVEyz+RawY9Lgw9GYnYJwRA12QKoao2TQX4nJYbyrc9KxgRfPwUr3m2nIMYTPqFRuVFBpm7HzgXfs7R4P7ASYzkYikGyVHzAwwgneLGEjyFDH3PWnCqJbEtw+hNtuaD3sRm8IEbGPq3DlPTnWAFCQroCJ37Cool9frEpf6hrlKrYpbLpmAJ2qjV+T+bfrz4PEjhGIhoChcnjppwVpknNd0DAH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgGDwE4waARoaTGc6UK8vi/Hrt3alkJeVAGMguvvoUCmkHX/WDP3eaomW3I3PIG4sZYap0mu+WZJP7HUPE7JvE8W9uMB9rCcfLzjdmldVbFNcIzlpUPlYYepu2SV1g5MHT4LULnxf8ybaGjJaI9fFOrkgxhM+oVG5UYSDs4oyIQwUD0ZidgnBEDXZAqhqjZNBfqv3+B0cRPBPBF8/BSvebacgxhM+oVG5Udio57+ZMZudtBdpXN/+TF1+kTL+UgQJ6PQVW7YikZZBZLpHPX2cL876E225oPexGbwgRsY+rcOU9OdYAUJCugInfsKiiX1+sSl/qGuUqtilsumYAnaqNX5Pkx52NbIRjufFzN374P4XnBWmSc13QMAfxX+83tKTAMMrbjhTuTWgQVu0p8aK+/WEWzEaIaTOrFYNjU84/cWAYPATjBoBGhpMZzpQry+L8eu3dqWQl5UAfpfvq40r+MyCY4NkCxhvN2ZOHV+G5MHgQ1nJ7HQATMDz1YuJjHq5LD64IW0BIvsEDzkzUXti4NhHgCmveurOcg2nYqikLZTUgtQufF/zJtoaMloj18U6uSDGEz6hUblRhIOzijIhDBQPRmJ2CcEQNdkCqGqNk0F+q/f4HRxE8E8EXz8FK95tpyDGEz6hUblRT5MedjWyEY59rHEM2ls7H5mhrToqn0vxOd6sZ+ZOj1ZcylhxvIhDdHRaD95/dx5Xeunecc0YYpS2A0pg0IXKAfoTbbmg97EZvCBGxj6tw5T051gBQkK6Aid+wqKJfX6xKX+oa5Sq2KWy6ZgCdqo1fgS0Q8KY8LE1yY87Qh/RhxmcFaZJzXdAwB/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYBg8BOMGgEaGkxnOlCvL4vx67d2pZCXlQDIaWbtotsGv8FCxDP3qwbVsUhhkNPT5f7nA4gQ98UH4VFmsshLwyZqEX0yQSoopRHPsdVlE9/7d9k1hg7vVbKbskGZaqM3lTyC1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVGEg7OKMiEMFA9GYnYJwRA12QKoao2TQX6r9/gdHETwTwRfPwUr3m2nIMYTPqFRuVEEtEPCmPCxNYrSp15qazNCcm+DQjdOwii9EsixgHzfgpgkBKoS+JoJz8CJyMd14UbNLpRUbhGJE/1hPeA4/Z4Hdzq8ZD4N5pmmmXu2K4MyeniVi+8hCIptSCOGw/w8R4o72J3d5gkzPgj0o9tSKt/gpyEOtFRue89+DTThtQMoPCB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxPj2+zu9Ni/N54lKYMrm4xgwq5hSDb0afk698iMmwLZ85mYOriUStnc5GxXfGVIUKxiMGz3GlfM0YA5G7K67V/bJP3zygM1H/csk575TiQwp2Su5ZQ9EbJWJYR7o49bDM9kCqGqNk0F+mOg98oPOmS3V9ZcRtaANMste59tIBI4Le/q6VFI+CtciYteit/OkjTXF19OYlppsmOg98oPOmS2XbGwZHY6RPn1w05OH30hf3y79xvg1OCJqokxhE2ZZFyaOfGP4k+LTSstatnhmS1AsH/rERXQsD8vNXX235NKTrMf135XxNWxCIl308aDNDWdZXjqecilnRFci2B+C0PeHSMRMD61nG2CWJHwZA9zYIHswlIIAjTM/Dk2Cop1CwTaPUaBWaWYv3nZ7x3JkDF20Oy+ZC8yvn9cc04P4MDHE+Pb7O702L83niUpgyubjGL2VBy0+i0qCNQs5Ma8f6AOsiGcFrCFOa05SS7TV2Ww7HMxdVpz0tEtxQiWC17HOk/AHxdvrLdRuPj1CV1RZ//hYyfQS75IZIk4q3T/7kXx32QKoao2TQX6Y6D3yg86ZLdX1lxG1oA0yy17n20gEjgt7+rpUUj4K1yJi16K386SNNcXX05iWmmyY6D3yg86ZLXCL6aRQpikcRpYK4u5tHZf2/bv/VaBW6LPsfWV+F0exsOJZUwVA6RHYR3VfQbFEukmQqaeeQwYCFzG2JMcUcATpnGa/7igJgywf+sRFdCwPy81dfbfk0pOsx/XflfE1bM0UGtXI38Ikm/8z01Cz3spo+Lu4t+epTYvvmyTVRZ0akuG8sxZGnLbXMZA8jz6JpW0taPySC5XVnxxBSLR0rte9+mRrBQ6hdM0G/mz1e5BBy2mqn7GZPyDNZrb9t7z1bLwACQRQMxX21CXuOZJi38DSLpoBkRt/Jc0ZLQJpEq/2lDEvcAVav/3WDKlYo4F7ttoCBUGLw9gBfpQBnHw+32VP1DJaXpCoPmWUlTlxMXvRLwtF7IJjSYewLLq/59LH0OejGzMdFskNjf+MlezTHkRmsTNi4govlKoWnlfZJ6j0DI5x5xGXNMzl4gQfJ9veXOeKupjYzIrrAYYuja5tFZbP3+SE/S8+o9UdPH/jTOLLE5IHjxujVqm8ZHVKWpf0MCZeFyBjILjdrTkXAA7clOe9x7PwKcWSuALCAhmL/nDFMe7RuXoroIezvCWCeYrSZtSoci8HHFLijIFAJUM0wIExNbC3BFXT0rCYqCn4E4kBNYa3DhJnUpXFCW4ObAdVea3b+q6rcmFeoDb51mhVxrkpWPKeAyMoMevoXeAkxxMOi5r1nK3Q6UyE7dGAD5Y1Gv1oqU8yASabEpIfGndh9xsSfZUZfRx0JBip3GTwz+i0SbM05MklrhP6+XwRSflDbwPm00Em9xvDCMtJnW+utwE5/UzYRsRiIi0CQbs99LTQNxSf47MYFiE+mkkA4ZzquM6Ou+TrGw/99S86dZ4y8L2WuD7/JYtYNZsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XtSGcH5S1UGF1o6BT+MZs87qeBVzW1jPXnAT1XmhtjQLu/B2qeXZTEu81L2wZlf/LaLJbSsXgtmT/E5wvzDsxiqY04N/vUCJyjhtaUGwmkOavkNQpsKuT77LAkuqc+LtLxvOB95Y5ZwVIjKTRLNmEupc9blp0C3DPtUfGp9S2aLfeVEJLGvpDOI8rF0IZNDzqK22cXct/8buQKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSmRMjBHan5ZFyzZcAcBc9j5HNsncG8OX2G1/j59aN95UQ9a+7bnFoS/VM2Hu6CaaijTskoSdAKPz+YjqfEhHV/l3h+T3So3rosc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64H5asWiTm3SsdGRmlsdqP07/WhKbyRwCBFVWqxxcPOif5IsHd0Otp7IfAVc5cv0dOMS8/BLt4dbCEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9d9REhhlHO/Ejr5qMwjXvzHe2jfmiwkxRRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTW0TS2MBBnJEMcgperFXdkZX+t167GGgzhmc7bYFsWnx2RwE+7Aw4o0hgqFZuHbMc/TgDSrBW7qFzjET2VVWK9Wbm3JrLv1pdpUrSNwAfxZUUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaTNQ4SkvOTDnEiDeLXuELwCy38kqTg5ssVg/6xCm1tx2ZgQfSSokdhwSffkJ+Fb6vt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi33OL0v+kQvgPFW+0gtvQVy1d7aN+aLCTFFFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNrOSmy/5GkeJcoW8uzqKy79pjPHKYYAx3Z6pMvER1BR1/NvoBuWw7fn1iS70F6vjZ699MUiG9KrtSIkDvDxtQrlIci+OOkPQA8/ODSd3SE8VQlkbAQoVSobjE76CA8SlplBGML34dkQeoHYABLvAfLkZIkwL0XvU1o4/zAWJSDcVTyWoTITjLTrjE76CA8SlpM1DhKS85MOfaZLnB+vWKZamrp5uLwIpfWD/rEKbW3HZktYv0kdQbtCn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3zNsJh9LZBjudiE1k4QaI3+rK4/S5HvSfKoi5yvCypCajxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSuTZ7FEPOeuRbKWmkSJuXcF5mTpiCfkuS/BNcStQO/AtsCdFFxZqV6vqby4r/o3vL2MNjpzKOqdipb5PBiOcDnluE0G3Iqtfcsc2SXIDhZe+1TK7PZnJfcaMC3Z7Um1ADSV5rWislrFZvOB95Y5ZwVAgfP3tU6skOBAeRZcEVae2YcZTPVtB64MzbCYfS2QY7nYhNZOEGiN+3MrNccZxWxGmnH/c6onoCEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9dqkfV7gFnu5/3xwP/VhRZs041kOD4SkWytl+lBFpRH4uPAbeuGXgRVKVKZ4mSrFPRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTQwhA5IfzWBo5vdmhosbnsLi3bw9Znzah8XPCx2LWRxpNSXQplRQkUsKCb3mmxechLWYhQpznHPJIW88cqOfZIAtHXsQu+hmyjxNIbIADIrQUJZGwEKFUqG4xO+ggPEpaZQRjC9+HZEHqB2AAS7wHy5GSJMC9F71NaOP8wFiUg3FU8lqEyE4y064xO+ggPEpaSwBYRRZjIQ2nZfSzxW13E5TvhoAAO1gq/9KcSqw/cI9Bv+lneJ8KUqGhTWMtl93JNchF41C48kM61XTe6c0M44p96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN8L7Q3SkYNIHnAkbkdc7p923MrNccZxWxFXY/U8qG/iWo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUh2aRVnCUW7VsOHrPXBOMHwHYvdsHJZPMKVpVngn4lr1duUb12nurjrSB05AHLqwBZ/2tWp7OgKSKIFJ0ERwnbwBf5e+iT1/7rHNklyA4WXvtUyuz2ZyX3GjAt2e1JtQA0lea1orJaxWbzgfeWOWcFQIHz97VOrJDgQHkWXBFWntmHGUz1bQeuBP0Kc954eUS5V6bXsuWwy6HfGq36haTHBIl9ej2qdUKOSLB3dDraeyHwFXOXL9HTjEvPwS7eHWwhJ9+Qn4Vvq+3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q76hLYembFc1UfGp9S2aLfV2FyPx97sSbTMblOCnpeaZr5r6wtCnFjEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E0Zog0dEDeMOVzO+EzFo2Ek3X4YGzW7ghTfqKNhXFtgrSwpizm4+LoA/x91kCb7dg8E8IjpRZx9bDv7p7mSkauio4mWW4yXBBKBuWwaeoOzh1CWRsBChVKhuMTvoIDxKWmUEYwvfh2RB6gdgAEu8B8uRkiTAvRe9TWjj/MBYlINxVPJahMhOMtOuMTvoIDxKWkzUOEpLzkw54EJUW9XhwYy/k1e9XI+DHo8aO17jypWI5Ai5HzNi2iDwjiG3f21TfZNB5F4768yNbVhwphMAdq7Kfev0QKTsGfFf3Ffz8Y6Ih+Lu5dokAnTp9rtQaHwBc6e3ALhurF0xChQPxR0isOB5Oo5Ed09xlQ/TFg15wh8fE1J+wqX7+WaXNJY6KZeuo4=";
console.log(s(e));

运行结果
image

  1. 编写python代码去调用js代码来获取网站数据。
import requests
import execjs
from html import escape


url = "https://vipapi.qimingpian.cn/DataList/productListVip"
data = {
    "tag": "",
    "unionid": "",
}
resp = requests.post(url, data=data, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                                                         "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"})
# print(resp.content)
ciphertext = escape(resp.text.strip().split('"')[-2]).replace("\\", "")     # 由于回显数据有转义字符,需要先用escape进行url解码
# print(ciphertext)
file_object = open("解密.js", mode="r", encoding="utf-8")
exec_code = file_object.read()
exec_js = execjs.compile(exec_code)
plaintext = exec_js.call("s", ciphertext)
print(plaintext)

上述代码是有问题的,因为js中的代码JSON.parse会对结果产生影响,经过调试,需要在js代码中将该函数删掉,利用python的json库对数据进行解析。

// js中只需要改这个函数即可
function s(e) {
    return o("5e5062e82f15fe4ca9d24bc5", decode(e), 0, 0, "012345677890123", 1)
}
import requests
import execjs
from html import escape
import json


url = "https://vipapi.qimingpian.cn/DataList/productListVip"
data = {
    "tag": "",
    "unionid": "",
}
resp = requests.post(url, data=data, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                                                         "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"})
# print(resp.content)
ciphertext = escape(resp.text.strip().split('"')[-2]).replace("\\", "")     # 由于回显数据有转义字符,需要先用escape进行url解码
# print(ciphertext)
file_object = open("解密.js", mode="r", encoding="utf-8")
exec_code = file_object.read()
exec_js = execjs.compile(exec_code)
plaintext = exec_js.call("s", ciphertext)
print(json.loads(plaintext))

运行结果如下:
image

标签:之企,16,++,解密,js,hD0SyTZKPEdmDun,new,Array,BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy
From: https://www.cnblogs.com/sbhglqy/p/18164380

相关文章

  • QJsonArray对其对象排序
    #include<QCoreApplication>#include<QJsonArray>#include<QJsonObject>#include<QDebug>#include<QList>//比较函数,用于指定排序规则boolcompareJsonObjects(constQJsonObject&obj1,constQJsonObject&obj2){returnobj1......
  • Nodejs中npm i 与npm ci的区别
    npmci与npmi主要有以下的区别:1.依赖的package不同#npmi依赖package.json#npmci依赖package-lock.json当package-lock.json中的依赖于package.json不一致时,npmci退出但不会修改package-lock.json。2.安装特点差异'''npmci只可以一次性的安装整个项目依赖,但无......
  • js设置网页标题、关键字、描述
    import.meta.env.VITE...Vue.js3.x获取环境变量letdocTitle=import.meta.env.VITE_TITLE;letdocDesc=import.meta.env.VITE_DESCRIPT;letdocKeywords=import.meta.env.VITE_KEYWORDS;//设置页面标题document.title=docTitle;//设置页......
  • vscode 快捷件的配置文件地址 C:\Users\Reciter\AppData\Roaming\Code\User\ke
    vscode快捷件的配置文件地址C:\Users\Reciter\AppData\Roaming\Code\User\keybindings.json更改快捷键冲突我要把QuickGoToSelectedFilePath插件的快捷键Ctrl+E,换成F12,插件文章:https://www.cnblogs.com/pengchenggang/p/18163728但是系统里面已经有好几个F12的......
  • js数组去重
    functionisPrimitive(obj){returnobj===null||!['object','function'].includes(typeofobj)}functionobjEqual(obj1,obj2){//console.log(isPrimitive(obj1)||isPrimitive(obj2))if(isPrimitive(obj1)||isPrimitive(obj2)){......
  • js 接收form表单响应
    可直接运行的示例:<%@pagecontentType="text/html;charset=UTF-8"pageEncoding="UTF-8"%><!DOCTYPEhtml><html><head><title>test</title></head><formid="myForm"><labelfor=&quo......
  • vite+jsx
    "@vitejs/plugin-vue-jsx": "^3.1.0"vite配置importvueJsxfrom'@vitejs/plugin-vue-jsx'//添加这一句//https://vitejs.dev/config/exportdefaultdefineConfig({plugins:[vue(),vueJsx()//添加这一句]})"vite": "3.0......
  • js+canvas图片裁剪
    canvas裁剪图片功能实现选择图片文件,预览原图裁剪图片显示裁剪后的图片调整裁剪区域大小获取裁剪后的图片图片裁剪功能优化<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8"/><metaname="viewport"content="width=dev......
  • 基于混沌序列的图像加解密算法matlab仿真,并输出加解密之后的直方图
    1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述3.1混沌系统特性       混沌系统是一类具有确定性、非线性、初值敏感性、遍历性和伪随机性等特性的动力学系统。其主要特性包括: 确定性:混沌系统由一组确定性微分方程或差分方程描述......
  • js逆向实战之中国男子篮球职业联赛官方网站返回数据解密
    url:https://www.cbaleague.com/data/#/teamMain?teamId=29124分析过程看流量包,返回数据全是加密的字符串,要做的就是解密回显数据。由于这里的网址都比较特殊,里面都带有id号,所以通过url关键字去搜索不是一个很好的办法。看initiators,里面有很多异步传输。异步传输......